File size: 2,800 Bytes
9f200a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import math
from inspect import isfunction
import torch
from torch import nn
import torch.distributed as dist


def gather_data(data, return_np=True):
    """gather data from multiple processes to one list"""
    data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
    dist.all_gather(data_list, data)  # gather not supported with NCCL
    if return_np:
        data_list = [data.cpu().numpy() for data in data_list]
    return data_list


def autocast(f):
    def do_autocast(*args, **kwargs):
        with torch.cuda.amp.autocast(
            enabled=True,
            dtype=torch.get_autocast_gpu_dtype(),
            cache_enabled=torch.is_autocast_cache_enabled(),
        ):
            return f(*args, **kwargs)

    return do_autocast


def extract_into_tensor(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
        shape[0], *((1,) * (len(shape) - 1))
    )
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def exists(val):
    return val is not None


def identity(*args, **kwargs):
    return nn.Identity()


def uniq(arr):
    return {el: True for el in arr}.keys()


def mean_flat(tensor):
    """
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def ismap(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] > 3)


def isimage(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)


def max_neg_value(t):
    return -torch.finfo(t.dtype).max


def shape_to_str(x):
    shape_str = "x".join([str(x) for x in x.shape])
    return shape_str


def init_(tensor):
    dim = tensor.shape[-1]
    std = 1 / math.sqrt(dim)
    tensor.uniform_(-std, std)
    return tensor


ckpt = torch.utils.checkpoint.checkpoint


def checkpoint(func, inputs, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass.
    :param func: the function to evaluate.
    :param inputs: the argument sequence to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        return ckpt(func, *inputs)
    else:
        return func(*inputs)