File size: 76,096 Bytes
26853cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# Copyright 2023 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import inspect
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin
from diffusers.models import AutoencoderKL
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import (
USE_PEFT_BACKEND,
BaseOutput,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers import DiffusionPipeline
# [Modified]
# Project import
from pnp_utils import register_time
from utils import load_ddim_latents_at_t
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import I2VGenXLPipeline
>>> pipeline = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
>>> pipeline.enable_model_cpu_offload()
>>> image_url = "https://github.com/ali-vilab/i2vgen-xl/blob/main/data/test_images/img_0009.png?raw=true"
>>> image = load_image(image_url).convert("RGB")
>>> prompt = "Papers were floating in the air on a table in the library"
>>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms"
>>> generator = torch.manual_seed(8888)
>>> frames = pipeline(
... prompt=prompt,
... image=image,
... num_inference_steps=50,
... negative_prompt=negative_prompt,
... guidance_scale=9.0,
... generator=generator
... ).frames[0]
>>> video_path = export_to_gif(frames, "i2v.gif")
```
"""
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil]")
return outputs
@dataclass
class I2VGenXLPipelineOutput(BaseOutput):
r"""
Output class for image-to-video pipeline.
Args:
frames (`List[np.ndarray]` or `torch.FloatTensor`)
List of denoised frames (essentially images) as NumPy arrays of shape `(height, width, num_channels)` or as
a `torch` tensor. The length of the list denotes the video length (the number of frames).
"""
frames: Union[List[np.ndarray], torch.FloatTensor]
# Modified from DiffEditInversionPipelineOutput
@dataclass
class StableVideoDiffusionInversionPipelineOutput(BaseOutput):
"""
Output class for Stable Diffusion pipelines.
Args:
latents (`torch.FloatTensor`)
inverted latents tensor
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `num_timesteps * batch_size` or numpy array of shape `(num_timesteps,
batch_size, height, width, num_channels)`. PIL images or numpy array present the denoised images of the
diffusion pipeline.
"""
inverted_latents: torch.FloatTensor
# images: Union[List[PIL.Image.Image], np.ndarray] # TODO: we can return the noisy video.
class I2VGenXLPipeline(DiffusionPipeline):
r"""
Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/).
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer (`CLIPTokenizer`):
A [`~transformers.CLIPTokenizer`] to tokenize text.
unet ([`I2VGenXLUNet`]):
A [`I2VGenXLUNet`] to denoise the encoded video latents.
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents.
"""
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
image_encoder: CLIPVisionModelWithProjection,
feature_extractor: CLIPImageProcessor,
unet: I2VGenXLUNet,
scheduler: DDIMScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
image_encoder=image_encoder,
feature_extractor=feature_extractor,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
# `do_resize=False` as we do custom resizing.
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False)
@property
def guidance_scale(self):
return self._guidance_scale
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
def enable_vae_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.vae.enable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
def disable_vae_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_slicing()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
def enable_vae_tiling(self):
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.vae.enable_tiling()
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
def disable_vae_tiling(self):
r"""
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
computing decoding in one step.
"""
self.vae.disable_tiling()
def encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_videos_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if self.do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
# Apply clip_skip to negative prompt embeds
if clip_skip is None:
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
else:
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
negative_prompt_embeds = negative_prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm(negative_prompt_embeds)
if self.do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
def _encode_image(self, image, device, num_videos_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.image_processor.pil_to_numpy(image)
image = self.image_processor.numpy_to_pt(image)
# Normalize the image with CLIP training stats.
image = self.feature_extractor(
images=image,
do_normalize=True,
do_center_crop=False,
do_resize=False,
do_rescale=False,
return_tensors="pt",
).pixel_values
image = image.to(device=device, dtype=dtype)
image_embeddings = self.image_encoder(image).image_embeds
image_embeddings = image_embeddings.unsqueeze(1)
# duplicate image embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = image_embeddings.shape
image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1)
image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
if self.do_classifier_free_guidance:
negative_image_embeddings = torch.zeros_like(image_embeddings) # TODO: Why is this zero?
image_embeddings = torch.cat([negative_image_embeddings, image_embeddings])
return image_embeddings
def decode_latents(self, latents, decode_chunk_size=None):
latents = 1 / self.vae.config.scaling_factor * latents
batch_size, channels, num_frames, height, width = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
if decode_chunk_size is not None:
frames = []
for i in range(0, latents.shape[0], decode_chunk_size):
frame = self.vae.decode(latents[i: i + decode_chunk_size]).sample
frames.append(frame)
image = torch.cat(frames, dim=0)
else:
image = self.vae.decode(latents).sample
decode_shape = (batch_size, num_frames, -1) + image.shape[2:]
video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
video = video.float()
return video
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
image,
height,
width,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
)
if prompt_embeds is not None and negative_prompt_embeds is not None:
if prompt_embeds.shape != negative_prompt_embeds.shape:
raise ValueError(
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
f" {negative_prompt_embeds.shape}."
)
if (
not isinstance(image, torch.Tensor)
and not isinstance(image, PIL.Image.Image)
and not isinstance(image, list)
):
raise ValueError(
"`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
f" {type(image)}"
)
def prepare_image_latents(
self,
image,
device,
num_frames,
num_videos_per_prompt,
):
image = image.to(device=device)
image_latents = self.vae.encode(image).latent_dist.sample()
image_latents = image_latents * self.vae.config.scaling_factor
# Add frames dimension to image latents
image_latents = image_latents.unsqueeze(2)
# Append a position mask for each subsequent frame
# after the intial image latent frame
frame_position_mask = []
for frame_idx in range(num_frames - 1):
scale = (frame_idx + 1) / (num_frames - 1)
frame_position_mask.append(torch.ones_like(image_latents[:, :, :1]) * scale)
if frame_position_mask:
frame_position_mask = torch.cat(frame_position_mask, dim=2)
image_latents = torch.cat([image_latents, frame_position_mask], dim=2)
# duplicate image_latents for each generation per prompt, using mps friendly method
image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1)
if self.do_classifier_free_guidance:
image_latents = torch.cat([image_latents] * 2)
return image_latents
# Modified from SVD/_encode_vae_image
def encode_vae_video(
self,
video: List[PIL.Image.Image],
device,
height: int = 576,
width: int = 1024,
):
# video is a list of PIL images
# [batch*frames] while batch is always 1 TODO: generalize to batch > 1
dtype = next(self.vae.parameters()).dtype
n_frames = len(video)
video_latents = []
for i in range(0, n_frames):
frame = video[i]
resized_frame = _center_crop_wide(frame, (width, height))
frame = self.image_processor.preprocess(resized_frame)
frame = frame.to(device=device, dtype=dtype)
image_latents = self.vae.encode(frame).latent_dist.sample() # [1, channels, height, width]
image_latents = image_latents * self.vae.config.scaling_factor
logger.debug(f"image_latents.shape: {image_latents.shape}")
image_latents = image_latents.squeeze(0) # [channels, height, width]
video_latents.append(image_latents)
video_latents = torch.stack(video_latents) # [batch*frames, channels, height, width]
video_latents = video_latents.reshape(1, n_frames, *video_latents.shape[1:])
video_latents = video_latents.permute(0, 2, 1, 3, 4) # [batch, channels, frames, height, width]
video_latents = video_latents.to(device=device, dtype=dtype)
# [batch, channels, frames, height, width]
return video_latents
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents
def prepare_latents(
self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
):
shape = (
batch_size,
num_channels_latents,
num_frames,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
logger.debug(f"latents.shape: {latents.shape}")
logger.debug(f"init_noise_sigma: {self.scheduler.init_noise_sigma}")
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
The suffixes after the scaling factors represent the stages where they are being applied.
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
Args:
s1 (`float`):
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
s2 (`float`):
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
mitigate "oversmoothing effect" in the enhanced denoising process.
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
"""
if not hasattr(self, "unet"):
raise ValueError("The pipeline must have `unet` for using FreeU.")
self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
def disable_freeu(self):
"""Disables the FreeU mechanism if enabled."""
self.unet.disable_freeu()
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
height: Optional[int] = 704,
width: Optional[int] = 1280,
target_fps: Optional[int] = 16,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
num_videos_per_prompt: Optional[int] = 1,
decode_chunk_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = 1,
ddim_init_latents_t_idx: Optional[int] = 1, # Modified
):
r"""
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`].
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
target_fps (`int`, *optional*):
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation.
num_frames (`int`, *optional*):
The number of video frames to generate.
num_inference_steps (`int`, *optional*):
The number of denoising steps.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
eta (`float`, *optional*):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
num_videos_per_prompt (`int`, *optional*):
The number of images to generate per prompt.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
logger.info(f"height: {height}, width: {width}")
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds)
logger.info(f"Prompt: {prompt}")
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = guidance_scale
# 3.1 Encode input text prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_videos_per_prompt,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 3.2 Encode image prompt
# 3.2.1 Image encodings.
# https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114
cropped_image = _center_crop_wide(image, (width, width))
cropped_image = _resize_bilinear(
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"])
)
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt)
# 3.2.2 Image latents.
resized_image = _center_crop_wide(image, (width, height))
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
image_latents = self.prepare_image_latents(
image,
device=device,
num_frames=num_frames,
num_videos_per_prompt=num_videos_per_prompt,
)
# 3.3 Prepare additional conditions for the UNet.
if self.do_classifier_free_guidance:
fps_tensor = torch.tensor([target_fps, target_fps]).to(device)
else:
fps_tensor = torch.tensor([target_fps]).to(device)
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel()
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
self.scheduler.timesteps = self.scheduler.timesteps[ddim_init_latents_t_idx:]
timesteps = self.scheduler.timesteps
logger.info(f"self.scheduler: {self.scheduler}")
logger.info(f"timesteps: {timesteps}")
logger.info(f"Sampling starts from latents_at_t={self.scheduler.timesteps[0]}")
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
fps=fps_tensor,
image_latents=image_latents,
image_embeddings=image_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
logger.debug(f"doing classifier free guidance with guidance_scale: {guidance_scale}")
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
batch_size, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
return I2VGenXLPipelineOutput(frames=latents)
video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size)
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return I2VGenXLPipelineOutput(frames=video)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def sample_with_pnp(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
height: Optional[int] = 704,
width: Optional[int] = 1280,
target_fps: Optional[int] = 16,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
num_videos_per_prompt: Optional[int] = 1,
decode_chunk_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = 1,
ddim_init_latents_t_idx: Optional[int] = 1, # [Modified]
ddim_inv_latents_path: Optional[str] = None, # [Modified]
ddim_inv_prompt: Union[str, List[str]] = None, # [Modified] this is the same prompt for ddim reconstruction
ddim_inv_1st_frame: PipelineImageInput = None, # [Modified]
):
r"""
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`].
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
target_fps (`int`, *optional*):
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation.
num_frames (`int`, *optional*):
The number of video frames to generate.
num_inference_steps (`int`, *optional*):
The number of denoising steps.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
eta (`float`, *optional*):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
num_videos_per_prompt (`int`, *optional*):
The number of images to generate per prompt.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
logger.info(f"height: {height}, width: {width}")
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds)
logger.info(f"Prompt: {prompt}")
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
# [Modified]
assert len(ddim_inv_prompt) == len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = guidance_scale
# 3.1 Encode input text prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_videos_per_prompt,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# [Modified]
# 3.1 Encode ddim inversion prompt
ddim_inv_prompt_embeds, _ = self.encode_prompt(
ddim_inv_prompt,
device,
num_videos_per_prompt,
negative_prompt=None,
prompt_embeds=None,
negative_prompt_embeds=None,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# [Modified]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
# [ddim_inversion_prompt, editing_negative_prompt, editing_prompt]
if self.do_classifier_free_guidance:
prompt_embeds_all = torch.cat([ddim_inv_prompt_embeds, negative_prompt_embeds, prompt_embeds])
else:
prompt_embeds_all = torch.cat([ddim_inv_prompt_embeds, prompt_embeds])
# 3.2 Encode image prompt
# 3.2.1 Image encodings.
# https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114
cropped_image = _center_crop_wide(image, (width, width))
cropped_image = _resize_bilinear(
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"])
)
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt)
# 3.2.2 Image latents.
resized_image = _center_crop_wide(image, (width, height))
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
image_latents = self.prepare_image_latents(
image,
device=device,
num_frames=num_frames,
num_videos_per_prompt=num_videos_per_prompt,
)
# [Modified]
# 3.2.1 Edited first frame encodings.
cropped_image = _center_crop_wide(ddim_inv_1st_frame, (width, width))
cropped_image = _resize_bilinear(
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"])
)
_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt)
if self.do_classifier_free_guidance:
ddim_inv_1st_frame_embeddings = _embeddings.chunk(2)[1] # Chunk 0 is negative prompt
else:
ddim_inv_1st_frame_embeddings = _embeddings
# 3.2.2 Edited first frame latents.
resized_image = _center_crop_wide(ddim_inv_1st_frame, (width, height))
ddim_inv_1st_frame = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
_latents = self.prepare_image_latents(
ddim_inv_1st_frame,
device=device,
num_frames=num_frames,
num_videos_per_prompt=num_videos_per_prompt,
)
if self.do_classifier_free_guidance:
ddim_inv_1st_frame_latents = _latents.chunk(2)[1]
else:
ddim_inv_1st_frame_latents = _latents
image_embeddings_all = torch.cat([ddim_inv_1st_frame_embeddings, image_embeddings])
image_latents_all = torch.cat([ddim_inv_1st_frame_latents, image_latents])
# 3.3 Prepare additional conditions for the UNet.
if self.do_classifier_free_guidance:
fps_tensor = torch.tensor([target_fps, target_fps, target_fps]).to(device)
else:
fps_tensor = torch.tensor([target_fps, target_fps]).to(device)
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel()
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
self.scheduler.timesteps = self.scheduler.timesteps[ddim_init_latents_t_idx:]
timesteps = self.scheduler.timesteps
logger.info(f"self.scheduler: {self.scheduler}")
logger.info(f"timesteps: {timesteps}")
logger.info(f"Sampling starts from latents_at_t={self.scheduler.timesteps[0]}")
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# [Modified]
# Order: ddim_inversion_prompt, editing_negative_prompt, editing_prompt
ddim_inv_latents_at_t = load_ddim_latents_at_t(t, ddim_inv_latents_path).to(self.device)
if self.do_classifier_free_guidance:
latent_model_input = torch.cat([ddim_inv_latents_at_t, latents, latents])
else:
latent_model_input = torch.cat([ddim_inv_latents_at_t, latents])
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# [Modified]
# Pnp
register_time(self, t.item())
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds_all,
fps=fps_tensor,
image_latents=image_latents_all,
image_embeddings=image_embeddings_all,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# [Modified]
# Order: ddim_inversion_prompt, editing_negative_prompt, editing_prompt
if self.do_classifier_free_guidance:
_noise_pred_ddim_inv, noise_pred_negative, noise_pred_editing = noise_pred.chunk(3)
logger.debug(f"doing classifier free guidance with guidance_scale: {guidance_scale}")
noise_pred = noise_pred_negative + guidance_scale * (noise_pred_editing - noise_pred_negative)
else:
_noise_pred_ddim_inv, noise_pred_editing = noise_pred.chunk(2)
noise_pred = noise_pred_editing
# reshape latents
batch_size, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if output_type == "latent":
return I2VGenXLPipelineOutput(frames=latents)
video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size)
video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return I2VGenXLPipelineOutput(frames=video)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def invert(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
height: Optional[int] = 704,
width: Optional[int] = 1280,
target_fps: Optional[int] = 16,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
num_videos_per_prompt: Optional[int] = 1,
decode_chunk_size: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = 1,
output_dir: Optional[str] = None,
):
r"""
The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`].
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`):
Image or images to guide image generation. If you provide a tensor, it needs to be compatible with
[`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json).
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
target_fps (`int`, *optional*):
Frames per second. The rate at which the generated images shall be exported to a video after generation. This is also used as a "micro-condition" while generation.
num_frames (`int`, *optional*):
The number of video frames to generate.
num_inference_steps (`int`, *optional*):
The number of denoising steps.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
eta (`float`, *optional*):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
num_videos_per_prompt (`int`, *optional*):
The number of images to generate per prompt.
decode_chunk_size (`int`, *optional*):
The number of frames to decode at a time. The higher the chunk size, the higher the temporal consistency
between frames, but also the higher the memory consumption. By default, the decoder will decode all frames at once
for maximal quality. Reduce `decode_chunk_size` to reduce memory usage.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
logger.info(f"height: {height}, width: {width}")
# 1. Check inputs. Raise error if not correct
self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
logger.info(f"prompt: {prompt}")
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
self._guidance_scale = guidance_scale
logger.debug(f"self._guidance_scale: {self._guidance_scale}")
# 3.1 Encode input text prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_videos_per_prompt,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 3.2 Encode image prompt
# 3.2.1 Image encodings.
# https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114
cropped_image = _center_crop_wide(image, (width, width))
cropped_image = _resize_bilinear(
cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"])
)
image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt)
# 3.2.2 Image latents.
resized_image = _center_crop_wide(image, (width, height))
image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype)
image_latents = self.prepare_image_latents(
image,
device=device,
num_frames=num_frames,
num_videos_per_prompt=num_videos_per_prompt,
)
# 3.3 Prepare additional conditions for the UNet.
if self.do_classifier_free_guidance:
fps_tensor = torch.tensor([target_fps, target_fps]).to(device)
else:
fps_tensor = torch.tensor([target_fps]).to(device)
fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel()
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
logger.debug(f"self.scheduler: {self.scheduler}")
logger.debug(f"timesteps: {timesteps}")
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
inverted_latents = [] # Modified
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# Concatenate image_latents over channels dimention
logger.debug(f"image_latents.shape: {image_latents.shape}")
logger.debug(f"latent_model_input.shape: {latent_model_input.shape}")
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
fps=fps_tensor,
image_latents=image_latents,
image_embeddings=image_embeddings,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
logger.debug(f"do_classifier_free_guidance with guidance_scale: {guidance_scale}")
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
batch_size, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4)
inverted_latents.append(latents.detach().clone()) # Modified
os.makedirs(output_dir, exist_ok=True)
torch.save(
latents.detach().clone(),
os.path.join(output_dir, f"ddim_latents_{t}.pt"),
)
logger.info(f"saved noisy latents at t={t} to {output_dir}")
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
# assert len(inverted_latents) == len(timesteps)
inverted_latents = torch.stack(list(reversed(inverted_latents)), 1)
if not return_dict:
return inverted_latents
# if output_type == "latent":
# return I2VGenXLPipelineOutput(frames=latents)
#
# video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size)
# video = tensor2vid(video_tensor, self.image_processor, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
# TODO: we can return the noisy video.
return StableVideoDiffusionInversionPipelineOutput(inverted_latents=inverted_latents)
# The following utilities are taken and adapted from
# https://github.com/ali-vilab/i2vgen-xl/blob/main/utils/transforms.py.
def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]):
if isinstance(image, list) and isinstance(image[0], torch.Tensor):
image = torch.cat(image, 0)
if isinstance(image, torch.Tensor):
if image.ndim == 3:
image = image.unsqueeze(0)
image_numpy = VaeImageProcessor.pt_to_numpy(image)
image_pil = VaeImageProcessor.numpy_to_pil(image_numpy)
image = image_pil
return image
def _resize_bilinear(
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]],
resolution: Tuple[int, int]
):
# First convert the images to PIL in case they are float tensors (only relevant for tests now).
image = _convert_pt_to_pil(image)
if isinstance(image, list):
image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image]
else:
image = image.resize(resolution, PIL.Image.BILINEAR)
return image
def _center_crop_wide(
image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]],
resolution: Tuple[int, int]
):
# First convert the images to PIL in case they are float tensors (only relevant for tests now).
image = _convert_pt_to_pil(image)
if isinstance(image, list):
scale = min(image[0].size[0] / resolution[0], image[0].size[1] / resolution[1])
image = [u.resize((round(u.width // scale), round(u.height // scale)), resample=PIL.Image.BOX) for u in image]
# center crop
x1 = (image[0].width - resolution[0]) // 2
y1 = (image[0].height - resolution[1]) // 2
image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) for u in image]
return image
else:
scale = min(image.size[0] / resolution[0], image.size[1] / resolution[1])
image = image.resize((round(image.width // scale), round(image.height // scale)), resample=PIL.Image.BOX)
x1 = (image.width - resolution[0]) // 2
y1 = (image.height - resolution[1]) // 2
image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1]))
return image
|