File size: 15,422 Bytes
26853cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import glob

import torch.nn.functional as F
from pathlib import Path
from PIL import Image
import torch
import yaml

import torchvision.transforms as T
from torchvision.io import read_video, write_video
import os
import random
import numpy as np

import logging
logger = logging.getLogger(__name__)

# Modified from tokenflow_utils.py
def register_time(model, t):
    conv_module = model.unet.up_blocks[1].resnets[1]
    setattr(conv_module, "t", t)
    up_res_dict = {1: [0, 1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
    for res in up_res_dict:
        for block in up_res_dict[res]:
            module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1.processor
            setattr(module, "t", t)
            module = model.unet.up_blocks[res].temp_attentions[block].transformer_blocks[0].attn1.processor
            setattr(module, "t", t)


# PNP injection functions
# Modified from ResnetBlock2D.forward
# Modified from models/resnet.py
from diffusers.utils import USE_PEFT_BACKEND
from diffusers.models.upsampling import Upsample2D
from diffusers.models.downsampling import Downsample2D


def register_conv_injection(model, injection_schedule):
    def conv_forward(self):
        def forward(
            input_tensor: torch.FloatTensor,
            temb: torch.FloatTensor,
            scale: float = 1.0,
        ) -> torch.FloatTensor:
            hidden_states = input_tensor

            hidden_states = self.norm1(hidden_states)
            hidden_states = self.nonlinearity(hidden_states)

            if self.upsample is not None:
                # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
                if hidden_states.shape[0] >= 64:
                    input_tensor = input_tensor.contiguous()
                    hidden_states = hidden_states.contiguous()
                input_tensor = (
                    self.upsample(input_tensor, scale=scale)
                    if isinstance(self.upsample, Upsample2D)
                    else self.upsample(input_tensor)
                )
                hidden_states = (
                    self.upsample(hidden_states, scale=scale)
                    if isinstance(self.upsample, Upsample2D)
                    else self.upsample(hidden_states)
                )
            elif self.downsample is not None:
                input_tensor = (
                    self.downsample(input_tensor, scale=scale)
                    if isinstance(self.downsample, Downsample2D)
                    else self.downsample(input_tensor)
                )
                hidden_states = (
                    self.downsample(hidden_states, scale=scale)
                    if isinstance(self.downsample, Downsample2D)
                    else self.downsample(hidden_states)
                )

            hidden_states = self.conv1(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv1(hidden_states)

            if self.time_emb_proj is not None:
                if not self.skip_time_act:
                    temb = self.nonlinearity(temb)
                temb = (
                    self.time_emb_proj(temb, scale)[:, :, None, None]
                    if not USE_PEFT_BACKEND
                    else self.time_emb_proj(temb)[:, :, None, None]
                )

            if self.time_embedding_norm == "default":
                if temb is not None:
                    hidden_states = hidden_states + temb
                hidden_states = self.norm2(hidden_states)
            elif self.time_embedding_norm == "scale_shift":
                if temb is None:
                    raise ValueError(
                        f" `temb` should not be None when `time_embedding_norm` is {self.time_embedding_norm}"
                    )
                time_scale, time_shift = torch.chunk(temb, 2, dim=1)
                hidden_states = self.norm2(hidden_states)
                hidden_states = hidden_states * (1 + time_scale) + time_shift
            else:
                hidden_states = self.norm2(hidden_states)

            hidden_states = self.nonlinearity(hidden_states)

            hidden_states = self.dropout(hidden_states)
            hidden_states = self.conv2(hidden_states, scale) if not USE_PEFT_BACKEND else self.conv2(hidden_states)

            if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                logger.debug(f"PnP Injecting Conv at t={self.t}")
                source_batch_size = int(hidden_states.shape[0] // 3)
                # inject unconditional
                hidden_states[source_batch_size : 2 * source_batch_size] = hidden_states[:source_batch_size]
                # inject conditional
                hidden_states[2 * source_batch_size :] = hidden_states[:source_batch_size]

            if self.conv_shortcut is not None:
                input_tensor = (
                    self.conv_shortcut(input_tensor, scale)
                    if not USE_PEFT_BACKEND
                    else self.conv_shortcut(input_tensor)
                )

            output_tensor = (input_tensor + hidden_states) / self.output_scale_factor

            return output_tensor

        return forward

    conv_module = model.unet.up_blocks[1].resnets[1]
    conv_module.forward = conv_forward(conv_module)
    setattr(conv_module, "injection_schedule", injection_schedule)


# Modified from AttnProcessor2_0.__call__
# Modified from models/attention.py
from typing import Optional
from diffusers.models.attention_processor import AttnProcessor2_0

def register_spatial_attention_pnp(model, injection_schedule):
    class ModifiedSpaAttnProcessor(AttnProcessor2_0):
        def __call__(
            self,
            attn,  # attn: Attention,
            hidden_states: torch.FloatTensor,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            temb: Optional[torch.FloatTensor] = None,
            scale: float = 1.0,
        ) -> torch.FloatTensor:
            residual = hidden_states
            if attn.spatial_norm is not None:
                hidden_states = attn.spatial_norm(hidden_states, temb)

            input_ndim = hidden_states.ndim

            if input_ndim == 4:
                batch_size, channel, height, width = hidden_states.shape
                hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

            batch_size, sequence_length, _ = (
                hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
            )

            # Modified here
            chunk_size = batch_size // 3  # batch_size is 3*chunk_size because concat[source, uncond, cond]

            if attention_mask is not None:
                attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
                # scaled_dot_product_attention expects attention_mask shape to be
                # (batch, heads, source_length, target_length)
                attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

            if attn.group_norm is not None:
                hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

            args = () if USE_PEFT_BACKEND else (scale,)
            query = attn.to_q(hidden_states, *args)

            if encoder_hidden_states is None:
                encoder_hidden_states = hidden_states
            elif attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

            key = attn.to_k(encoder_hidden_states, *args)
            value = attn.to_v(encoder_hidden_states, *args)

            # Modified here.
            if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                logger.debug(f"PnP Injecting Spa-Attn at t={self.t}")
                # inject source into unconditional
                query[chunk_size : 2 * chunk_size] = query[:chunk_size]
                key[chunk_size : 2 * chunk_size] = key[:chunk_size]
                # inject source into conditional
                query[2 * chunk_size :] = query[:chunk_size]
                key[2 * chunk_size :] = key[:chunk_size]

            inner_dim = key.shape[-1]
            head_dim = inner_dim // attn.heads

            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )

            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            hidden_states = hidden_states.to(query.dtype)

            # linear proj
            hidden_states = attn.to_out[0](hidden_states, *args)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

            if attn.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / attn.rescale_output_factor

            return hidden_states

    # for _, module in model.unet.named_modules():
    #     if isinstance_str(module, "BasicTransformerBlock"):
    #         module.attn1.processor.__call__ = sa_processor__call__(module.attn1.processor)
    #         setattr(module.attn1.processor, "injection_schedule", [])  # Disable PNP

    res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
    # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
    for res in res_dict:
        for block in res_dict[res]:
            module = model.unet.up_blocks[res].attentions[block].transformer_blocks[0].attn1
            modified_processor = ModifiedSpaAttnProcessor()
            setattr(modified_processor, "injection_schedule", injection_schedule)
            module.processor = modified_processor



def register_temp_attention_pnp(model, injection_schedule):
    class ModifiedTmpAttnProcessor(AttnProcessor2_0):
        def __call__(
            self,
            attn,  # attn: Attention,
            hidden_states: torch.FloatTensor,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.FloatTensor] = None,
            temb: Optional[torch.FloatTensor] = None,
            scale: float = 1.0,
        ) -> torch.FloatTensor:
            residual = hidden_states
            if attn.spatial_norm is not None:
                hidden_states = attn.spatial_norm(hidden_states, temb)

            input_ndim = hidden_states.ndim

            if input_ndim == 4:
                batch_size, channel, height, width = hidden_states.shape
                hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

            batch_size, sequence_length, _ = (
                hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
            )

            # Modified here
            chunk_size = batch_size // 3  # batch_size is 3*chunk_size because concat[source, uncond, cond]

            if attention_mask is not None:
                attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
                # scaled_dot_product_attention expects attention_mask shape to be
                # (batch, heads, source_length, target_length)
                attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

            if attn.group_norm is not None:
                hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

            args = () if USE_PEFT_BACKEND else (scale,)
            query = attn.to_q(hidden_states, *args)

            if encoder_hidden_states is None:
                encoder_hidden_states = hidden_states
            elif attn.norm_cross:
                encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

            key = attn.to_k(encoder_hidden_states, *args)
            value = attn.to_v(encoder_hidden_states, *args)

            # Modified here.
            if self.injection_schedule is not None and (self.t in self.injection_schedule or self.t == 1000):
                logger.debug(f"PnP Injecting Tmp-Attn at t={self.t}")
                # inject source into unconditional
                query[chunk_size : 2 * chunk_size] = query[:chunk_size]
                key[chunk_size : 2 * chunk_size] = key[:chunk_size]
                # inject source into conditional
                query[2 * chunk_size :] = query[:chunk_size]
                key[2 * chunk_size :] = key[:chunk_size]

            inner_dim = key.shape[-1]
            head_dim = inner_dim // attn.heads

            query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
            value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

            # the output of sdp = (batch, num_heads, seq_len, head_dim)
            # TODO: add support for attn.scale when we move to Torch 2.1
            hidden_states = F.scaled_dot_product_attention(
                query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
            )

            hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
            hidden_states = hidden_states.to(query.dtype)

            # linear proj
            hidden_states = attn.to_out[0](hidden_states, *args)
            # dropout
            hidden_states = attn.to_out[1](hidden_states)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

            if attn.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / attn.rescale_output_factor

            return hidden_states
    # for _, module in model.unet.named_modules():
    #     if isinstance_str(module, "BasicTransformerBlock"):
    #         module.attn1.processor.__call__ = ta_processor__call__(module.attn1.processor)
    #         setattr(module.attn1.processor, "injection_schedule", [])  # Disable PNP

    res_dict = {1: [1, 2], 2: [0, 1, 2], 3: [0, 1, 2]}
    # we are injecting attention in blocks 4 - 11 of the decoder, so not in the first block of the lowest resolution
    for res in res_dict:
        for block in res_dict[res]:
            module = model.unet.up_blocks[res].temp_attentions[block].transformer_blocks[0].attn1
            modified_processor = ModifiedTmpAttnProcessor()
            setattr(modified_processor, "injection_schedule", injection_schedule)
            module.processor = modified_processor