File size: 17,300 Bytes
d9c19b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import torch
import math

import torch.nn as nn
import torch.nn.functional as F

from transformers import BertTokenizer
from transformers.models.bert.modeling_bert import BertLMHeadModel as BertLMHeadModelRaw

from .qformer import BertConfig
from .qformer import BertLMHeadModel as BertLMHeadModelQF

class VlmAttention(nn.Module):
    def __init__(self, model_args, vision_tower):
        super().__init__()

        pretrain_mm_mlp_adapter = getattr(model_args, "pretrain_mm_mlp_adapter", None)
        pretrain_qformer = getattr(model_args, "mm_vlmattention_pretrained", None)
        self.bert_type = getattr(model_args, "mm_vlmattention_bert_type", "qformer")
        self.num_query = getattr(model_args, "mm_vlmattention_num_query", 32)
        self.compress_type = getattr(model_args, "mm_vlmattention_compress_type", None)
        self.mm_hidden_size = self.hidden_size = vision_tower.hidden_size
        self.mm_vision_select_feature = model_args.mm_vision_select_feature
        self.language_hidden_size = 4096
        for_eval = True

        if 'pretrain' in self.bert_type:
            # for qformer that use evaclip for prtrain
            att_feat_size = 1408
        else:
            att_feat_size = self.mm_hidden_size
        self.vlm_att_tokenlizer, self.vlm_att_encoder, self.vlm_att_query = self.init_bert(att_feat_size, truncation_side="left")
        self.vlm_att_projector = torch.nn.Linear(self.vlm_att_encoder.config.hidden_size, self.mm_hidden_size)
        self.vlm_att_key_projector  = torch.nn.Linear(self.mm_hidden_size, self.mm_hidden_size)
        self.vlm_att_val_projector  = torch.nn.Linear(self.mm_hidden_size, self.language_hidden_size)

        if "raw" in self.bert_type:
            self.vlm_att_bert_proj  = torch.nn.Linear(att_feat_size, self.vlm_att_encoder.config.hidden_size)
        elif "pretrain" in self.bert_type and self.mm_hidden_size!=att_feat_size:
            self.vlm_att_bert_proj = torch.nn.Linear(self.mm_hidden_size, att_feat_size)
        else:
            self.vlm_att_bert_proj = None
        
        def get_w(weights, keyword):
            return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
        
        if 'qformer_pretrain' in self.bert_type:
            self.vlm_att_ln = torch.nn.LayerNorm(att_feat_size)
        
        if pretrain_qformer is not None:
            print("Loading pretrained qformer weights...")
            qformer_weight = torch.load(pretrain_qformer, map_location='cpu')['model']
            bert_weight = {_key: qformer_weight[_key] for _key in qformer_weight if 'bert' in _key}
            self.vlm_att_encoder.load_state_dict(get_w(bert_weight, 'Qformer'))
            self.vlm_att_ln.load_state_dict(get_w(qformer_weight, 'ln_vision'))
            self.vlm_att_query.data = qformer_weight['query_tokens']
        
        if 'freeze_all' in self.bert_type:
            print("Freezing all qformer weights...")
            self.vlm_att_encoder.requires_grad_(False)
            self.vlm_att_ln.requires_grad_(False)
            self.vlm_att_query.requires_grad_(False)
            self.vlm_att_projector.requires_grad_(False)
            self.vlm_att_key_projector.requires_grad_(False)
            self.vlm_att_val_projector.requires_grad_(False)
        elif 'freeze' in self.bert_type:
            print("Freezing pretrained qformer weights...")
            self.vlm_att_encoder.requires_grad_(False)
            self.vlm_att_ln.requires_grad_(False)
            self.vlm_att_query.requires_grad_(False)
        

        if pretrain_mm_mlp_adapter is not None:
            att_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
        else:
            trainable_module = ['vlm_att_encoder', 'vlm_att_projector', 'vlm_att_key_projector', 
                                'vlm_att_val_projector', 'vlm_att_query', 'vlm_att_visual_proj',
                                'vlm_att_ln']
            if hasattr(model_args, 'model_name_or_path'):
                model_save_path = model_args.model_name_or_path
            else:
                model_save_path = model_args.model_path
            model_idx_path = getattr(model_args, 'model_path', model_save_path)
            weight_file = json.load(open(os.path.join(model_idx_path, 'pytorch_model.bin.index.json'), 'r'))['weight_map']
            model_path = set([weight_file[_key] for _key in weight_file if any([_module in _key for _module in trainable_module])])
            att_projector_weights = {}
            for _model in model_path:
                att_projector_weights.update(torch.load(os.path.join(model_idx_path, _model), map_location='cpu'))
            if len(att_projector_weights) == 0:
                return
        
        bert_dict = get_w(att_projector_weights, 'vlm_att_encoder')
        if "bert.embeddings.position_ids" not in bert_dict and "raw_bert" not in self.bert_type:
            bert_dict["bert.embeddings.position_ids"] = self.vlm_att_encoder.bert.embeddings.position_ids
        print('Loading pretrained weights...')
        # import pdb;pdb.set_trace()

        self.vlm_att_encoder.load_state_dict(bert_dict)
        self.vlm_att_projector.load_state_dict(get_w(att_projector_weights, 'vlm_att_projector'))
        self.vlm_att_key_projector.load_state_dict(get_w(att_projector_weights, 'vlm_att_key_projector'))
        self.vlm_att_val_projector.load_state_dict(get_w(att_projector_weights, 'vlm_att_val_projector'))

        if "qformer" in self.bert_type:
            print('Loading vlm_att_query weights...')
            self.vlm_att_query.data = att_projector_weights['model.vlm_att_query']
            if "pretrain" in self.bert_type:
                print('Loading vlm_att_ln weights...')
                self.vlm_att_ln.load_state_dict(get_w(att_projector_weights, 'vlm_att_ln'))

        if self.vlm_att_bert_proj is not None:
            print('Loading vlm_att_bert_proj weights...')
            self.vlm_att_bert_proj.load_state_dict(get_w(att_projector_weights, 'vlm_att_bert_proj'))
        
        if for_eval:
            weight_type = torch.float16
            # import pdb;pdb.set_trace()
            # device_type = self.mm_projector[0].weight.device
            device_type = vision_tower.vision_tower.patch_embed.proj.weight.device
            self.vlm_att_encoder = self.vlm_att_encoder.to(device=device_type, dtype=weight_type)
            self.vlm_att_projector = self.vlm_att_projector.to(device=device_type, dtype=weight_type)
            self.vlm_att_key_projector = self.vlm_att_key_projector.to(device=device_type, dtype=weight_type)
            self.vlm_att_val_projector = self.vlm_att_val_projector.to(device=device_type, dtype=weight_type)

            if "qformer" in self.bert_type:
                self.vlm_att_query.data = self.vlm_att_query.data.to(device=device_type, dtype=weight_type)
                if "pretrain" in self.bert_type:
                    self.vlm_att_ln = self.vlm_att_ln.to(device=device_type, dtype=weight_type)
            
            if self.vlm_att_bert_proj is not None:
                self.vlm_att_bert_proj = self.vlm_att_bert_proj.to(device=device_type, dtype=weight_type)

    def forward(self, image_features, prompts=None, image_counts=None, long_video=False):        
        img_feat_lst = []
        # import pdb;pdb.set_trace()
        if image_counts is None:
            assert len(image_features) == len(prompts), f"Size mismatch! image_features: {len(image_features)}, prompts: {len(prompts)}"
        else:
            assert len(prompts) == len(image_counts), f"Size mismatch! prompts: {len(prompts)}, image_counts: {len(image_counts)}"
        image_atts = torch.ones(image_features.size()[:-1], dtype=torch.long).to(image_features.device)    

        total_count = 0
        # calculate each image feat according to the prompt
        # import pdb;pdb.set_trace()
        for _idx in range(len(prompts)):
            assert isinstance(prompts[_idx], list), f"Prompt should be a list, but got {type(prompts[_idx])}"
            input_token = self.vlm_att_tokenlizer(
                prompts[_idx], 
                padding='longest', 
                truncation=True,
                max_length=256,
                return_tensors="pt"
                ).to(image_features.device)

            input_ids = input_token.input_ids
            attention_masks = input_token.attention_mask
            
            if image_counts is None:
                img_feat_prompt = image_features[_idx, None].expand(len(prompts[_idx]), -1, -1)
                img_att_prompt = image_atts[_idx, None].expand(len(prompts[_idx]), -1)
            else:
                # shape: [prompt_num*frame_num, image_shape, feat_dim]
                img_feat_prompt = image_features[total_count:total_count+image_counts[_idx]]
                img_feat_prompt = img_feat_prompt[None].expand(len(prompts[_idx]), -1, -1, -1).flatten(0,1)
                img_att_prompt = image_atts[total_count:total_count+image_counts[_idx]]
                img_att_prompt = img_att_prompt[None].expand(len(prompts[_idx]), -1, -1).flatten(0,1)
                input_ids = input_ids[:,None].expand(-1, image_counts[_idx], -1).flatten(0,1)
                attention_masks = attention_masks[:,None].expand(-1, image_counts[_idx], -1).flatten(0,1)
                total_count += image_counts[_idx]
            
            if "pretrain" in self.bert_type and self.vlm_att_bert_proj is not None:
                bert_feat = self.vlm_att_bert_proj(img_feat_prompt)
            else:
                bert_feat = img_feat_prompt.clone()

            # remove cls embedding
            if self.mm_vision_select_feature == 'patch':
                if img_feat_prompt.shape[1]%2 == 1:
                    img_feat_prompt = img_feat_prompt[:, 1:]

            if "qformer" in self.bert_type:
                query_tokens = self.vlm_att_query.expand(bert_feat.shape[0], -1, -1)
                query_atts = torch.cat([torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(bert_feat.device), 
                                        attention_masks],dim=1)
                
                if 'pretrain' in self.bert_type:
                    mm_img_in = self.vlm_att_ln(bert_feat)
                else:
                    mm_img_in = bert_feat
                
                if long_video:
                    outputs = []
                    block_size = 64
                    for L in range(0, len(input_ids), block_size):
                        R = L + block_size
                        mm_output = self.vlm_att_encoder.bert(
                            input_ids[L:R],
                            query_embeds=query_tokens[L:R],
                            attention_mask=query_atts[L:R],
                            encoder_hidden_states=mm_img_in[L:R],
                            encoder_attention_mask=img_att_prompt[L:R],
                            return_dict=True,
                        )
                        mm_output = mm_output.last_hidden_state[:,:query_tokens.shape[1]]
                        outputs.append(mm_output)
                    mm_output = torch.cat(outputs)
                    torch.cuda.empty_cache()
                else:
                    mm_output = self.vlm_att_encoder.bert(
                        input_ids,
                        query_embeds=query_tokens,
                        attention_mask=query_atts,
                        encoder_hidden_states=mm_img_in,
                        encoder_attention_mask=img_att_prompt,
                        return_dict=True,
                    )
                    mm_output = mm_output.last_hidden_state[:,:query_tokens.shape[1]]
                
            elif "raw" in self.bert_type:
                if self.mm_vision_select_feature == 'patch' and bert_feat.shape[1]%2 == 1:
                    bert_feat = bert_feat[:, 1:]
                    img_att_prompt = img_att_prompt[:, 1:]
                
                mm_output = self.vlm_att_encoder.bert(
                    input_ids,
                    attention_mask=attention_masks,
                    encoder_hidden_states=self.vlm_att_bert_proj(bert_feat),
                    encoder_attention_mask=img_att_prompt,
                    return_dict=True,
                )
                mm_output = mm_output.last_hidden_state
            else:
                raise ValueError(f'Unexpected bert type: {self.bert_type}')
            
            text_q = self.vlm_att_projector(mm_output)
            # shape: [prompt_num*frame_num, feat_dim]
            # ctx_embed,vis_embed = self.token_generation(text_q, img_feat_prompt, long_video=long_video)
            final_token = self.token_generation(text_q, img_feat_prompt, long_video=long_video)

            if image_counts is not None:
                # shape: [prompt_num, frame_num*image_shape, feat_dim]
                final_token = final_token.reshape(len(prompts[_idx]), image_counts[_idx], *final_token.shape[-2:])
                final_token = final_token.flatten(1,2)
            img_feat_lst.append(final_token)

        return img_feat_lst

    def init_bert(self, vision_width, cross_attention_freq=2, truncation_side="right"):
        # initialize BERT tokenizer
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        # initialize BERT
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        query_tokens = None
        
        if "qformer" in self.bert_type:
            mm_model = BertLMHeadModelQF.from_pretrained(
                "bert-base-uncased", config=encoder_config
            )
            query_tokens = nn.Parameter(
                torch.zeros(1, self.num_query, encoder_config.hidden_size)
            )
            query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        elif "raw" in self.bert_type:
            encoder_config.is_decoder = True
            mm_model = BertLMHeadModelRaw.from_pretrained(
                "bert-base-uncased", config=encoder_config
            )
        else:
            raise NotImplementedError("BERT type not implemented...")
        
        mm_model.resize_token_embeddings(len(tokenizer))
        mm_model.cls = None
        
        if "layer" in self.bert_type:
            layer_num = int(self.bert_type.split(':')[-1])
            mm_model.bert.encoder.layer = mm_model.bert.encoder.layer[:layer_num]
            print(f"Only use {layer_num} layers in BERT...")
        
        return tokenizer, mm_model, query_tokens


    def token_generation(self, text_q, vis_embed, long_video=False):
        ctx_embed = self.vlm_att_key_projector(vis_embed)
        # Key part 1: calculate context-related embedding
        ctx_embed = text_q @ ctx_embed.transpose(-1,-2) 
        ctx_embed = ctx_embed / (vis_embed.shape[-1] ** 0.5)
        if not long_video:
            ctx_embed = (ctx_embed.softmax(-1) @ vis_embed).mean(1)
        else:
            block_size = 64
            outputs = []
            ctx_score = ctx_embed.softmax(-1)    
            for L in range(0, len(ctx_score), block_size):
                R = L + block_size
                sub_embed = (ctx_score[L:R] @ vis_embed[L:R]).mean(1)
                outputs.append(sub_embed)
            ctx_embed = torch.cat(outputs)
            torch.cuda.empty_cache()
        ctx_embed = self.vlm_att_val_projector(ctx_embed[:,None])

        # Key part 2: calculate visual embedding
        if self.compress_type is not None:
            if 'grid' in self.compress_type:
                grid_size = int(self.compress_type.split('grid:')[-1])
                cur_shape = int(vis_embed.shape[1]**0.5)
                assert grid_size > 1, f'Grid size should be larger than 1, but got {grid_size}'
                vis_embed = vis_embed.reshape(vis_embed.shape[0], cur_shape, cur_shape, -1)
                grid_stride = cur_shape // grid_size
                vis_embed = F.avg_pool2d(vis_embed.permute(0, 3, 1, 2), 
                                         padding=0,
                                         kernel_size=grid_stride, 
                                         stride=grid_stride)
                
                vis_embed = vis_embed.permute(0, 2, 3, 1).flatten(1,2)
            elif 'mean' in self.compress_type:
                # import pdb;pdb.set_trace()
                vis_embed = vis_embed.mean(dim=1, keepdim=True)
        
        # import pdb ; pdb.set_trace()
        # concat token in shape (B, n+1, C)
        vis_embed = self.mm_projector(vis_embed)                
        final_token = torch.cat([ctx_embed, vis_embed], dim=1)
        return final_token

    @property
    def config(self):
        return {
            'mm_resampler_type': 'vlm_attention',
            'mm_vlmattention_bert_type': self.bert_type,
            'mm_vlmattention_num_query': self.num_query,
            'mm_vlmattention_compress_type': self.compress_type,
        }