File size: 12,693 Bytes
ec636e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import argparse
import copy
import os
import re
import subprocess
import tempfile
import base64
from pathlib import Path
import fitz
import gradio as gr
import time
import html
from openai import OpenAI
stop_generation = False
def stream_from_vllm(messages):
global stop_generation
client = OpenAI(
base_url="https://open.bigmodel.cn/api/paas/v4"
)
response = client.chat.completions.create(
model="GLM-4.1V-Thinking-Flash",
messages=messages,
temperature=0.01,
stream=True,
max_tokens=8192
)
for chunk in response:
if stop_generation:
break
if chunk.choices and chunk.choices[0].delta:
delta = chunk.choices[0].delta
yield delta
class GLM4VModel:
def _strip_html(self, text: str) -> str:
return re.sub(r"<[^>]+>", "", text).strip()
def _wrap_text(self, text: str):
return [{"type": "text", "text": text}]
def _image_to_base64(self, image_path):
with open(image_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
ext = Path(image_path).suffix.lower()
if ext in ['.jpg', '.jpeg']:
mime_type = 'image/jpeg'
elif ext == '.png':
mime_type = 'image/png'
elif ext == '.gif':
mime_type = 'image/gif'
elif ext == '.bmp':
mime_type = 'image/bmp'
elif ext in ['.tiff', '.tif']:
mime_type = 'image/tiff'
elif ext == '.webp':
mime_type = 'image/webp'
else:
mime_type = 'image/jpeg'
return f"data:{mime_type};base64,{encoded_string}"
def _pdf_to_imgs(self, pdf_path):
doc = fitz.open(pdf_path)
imgs = []
for i in range(doc.page_count):
pix = doc.load_page(i).get_pixmap(dpi=180)
img_p = os.path.join(tempfile.gettempdir(), f"{Path(pdf_path).stem}_{i}.png")
pix.save(img_p)
imgs.append(img_p)
doc.close()
return imgs
def _ppt_to_imgs(self, ppt_path):
tmp = tempfile.mkdtemp()
subprocess.run(
["libreoffice", "--headless", "--convert-to", "pdf", "--outdir", tmp, ppt_path],
check=True,
)
pdf_path = os.path.join(tmp, Path(ppt_path).stem + ".pdf")
return self._pdf_to_imgs(pdf_path)
def _files_to_content(self, media):
out = []
for f in media or []:
ext = Path(f.name).suffix.lower()
if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
out.append({"type": "video_url", "video_url": {"url": f"file://{f.name}"}})
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
base64_url = self._image_to_base64(f.name)
out.append({"type": "image_url", "image_url": {"url": base64_url}})
elif ext in [".ppt", ".pptx"]:
for p in self._ppt_to_imgs(f.name):
base64_url = self._image_to_base64(p)
out.append({"type": "image_url", "image_url": {"url": base64_url}})
elif ext == ".pdf":
for p in self._pdf_to_imgs(f.name):
base64_url = self._image_to_base64(p)
out.append({"type": "image_url", "image_url": {"url": base64_url}})
return out
def _stream_fragment(self, reasoning_content: str = "", content: str = "", skip_think: bool = False):
think_html = ""
if reasoning_content and not skip_think:
# Properly escape and format thinking content
think_content = html.escape(reasoning_content).replace("\n", "<br>")
think_html = (
"<details open><summary style='cursor:pointer;font-weight:bold;color:#007acc;'>💭 Thinking</summary>"
"<div style='color:#555555;line-height:1.6;padding:15px;border-left:4px solid #007acc;margin:10px 0;background-color:#f0f7ff;border-radius:4px;'>"
+ think_content
+ "</div></details>"
)
answer_html = ""
if content:
# Properly handle content formatting
content_escaped = html.escape(content)
# Convert newlines to HTML breaks
content_formatted = content_escaped.replace("\n", "<br>")
answer_html = f"<div style='margin:0.5em 0; white-space: pre-wrap; line-height:1.6;'>{content_formatted}</div>"
return think_html + answer_html
def _build_messages(self, raw_hist, sys_prompt):
msgs = []
if sys_prompt.strip():
msgs.append({"role": "system", "content": [{"type": "text", "text": sys_prompt.strip()}]})
for h in raw_hist:
if h["role"] == "user":
msgs.append({"role": "user", "content": h["content"]})
else:
# Clean HTML from previous responses
raw = re.sub(r"<details.*?</details>", "", h["content"], flags=re.DOTALL)
clean_content = self._strip_html(raw).strip()
if clean_content:
msgs.append({"role": "assistant", "content": self._wrap_text(clean_content)})
return msgs
def stream_generate(self, raw_hist, sys_prompt: str, *, skip_special_tokens: bool = False):
global stop_generation
stop_generation = False
msgs = self._build_messages(raw_hist, sys_prompt)
reasoning_buffer = ""
content_buffer = ""
try:
for delta in stream_from_vllm(msgs):
if stop_generation:
break
# Handle different possible response formats
if hasattr(delta, 'reasoning_content') and delta.reasoning_content:
reasoning_buffer += delta.reasoning_content
elif hasattr(delta, 'content') and delta.content:
content_buffer += delta.content
else:
# Fallback: check if delta itself contains the content
if isinstance(delta, dict):
if 'reasoning_content' in delta and delta['reasoning_content']:
reasoning_buffer += delta['reasoning_content']
if 'content' in delta and delta['content']:
content_buffer += delta['content']
# Additional fallback for standard OpenAI format
elif hasattr(delta, 'content') and delta.content:
content_buffer += delta.content
yield self._stream_fragment(reasoning_buffer, content_buffer)
except Exception as e:
error_msg = f"Error during streaming: {str(e)}"
yield self._stream_fragment("", error_msg)
def format_display_content(content):
if isinstance(content, list):
text_parts = []
file_count = 0
for item in content:
if item["type"] == "text":
text_parts.append(item["text"])
else:
file_count += 1
display_text = " ".join(text_parts)
if file_count > 0:
return f"[{file_count} file(s) uploaded]\n{display_text}"
return display_text
return content
def create_display_history(raw_hist):
display_hist = []
for h in raw_hist:
if h["role"] == "user":
display_content = format_display_content(h["content"])
display_hist.append({"role": "user", "content": display_content})
else:
display_hist.append({"role": "assistant", "content": h["content"]})
return display_hist
glm4v = GLM4VModel()
def check_files(files):
vids = imgs = ppts = pdfs = 0
for f in files or []:
ext = Path(f.name).suffix.lower()
if ext in [".mp4", ".avi", ".mkv", ".mov", ".wmv", ".flv", ".webm", ".mpeg", ".m4v"]:
vids += 1
elif ext in [".jpg", ".jpeg", ".png", ".gif", ".bmp", ".tiff", ".webp"]:
imgs += 1
elif ext in [".ppt", ".pptx"]:
ppts += 1
elif ext == ".pdf":
pdfs += 1
if vids > 1 or ppts > 1 or pdfs > 1:
return False, "Only one video or one PPT or one PDF allowed"
if imgs > 10:
return False, "Maximum 10 images allowed"
if (ppts or pdfs) and (vids or imgs) or (vids and imgs):
return False, "Cannot mix documents, videos, and images"
return True, ""
def chat(files, msg, raw_hist, sys_prompt):
global stop_generation
stop_generation = False
ok, err = check_files(files)
if not ok:
raw_hist.append({"role": "assistant", "content": err})
display_hist = create_display_history(raw_hist)
yield display_hist, copy.deepcopy(raw_hist), None, ""
return
payload = glm4v._files_to_content(files) if files else None
if msg.strip():
if payload is None:
payload = glm4v._wrap_text(msg.strip())
else:
payload.append({"type": "text", "text": msg.strip()})
user_rec = {"role": "user", "content": payload if payload else msg.strip()}
if raw_hist is None:
raw_hist = []
raw_hist.append(user_rec)
place = {"role": "assistant", "content": ""}
raw_hist.append(place)
display_hist = create_display_history(raw_hist)
yield display_hist, copy.deepcopy(raw_hist), None, ""
try:
for chunk in glm4v.stream_generate(raw_hist[:-1], sys_prompt):
if stop_generation:
break
place["content"] = chunk
display_hist = create_display_history(raw_hist)
yield display_hist, copy.deepcopy(raw_hist), None, ""
except Exception as e:
error_content = f"<div style='color: red;'>Error: {html.escape(str(e))}</div>"
place["content"] = error_content
display_hist = create_display_history(raw_hist)
yield display_hist, copy.deepcopy(raw_hist), None, ""
display_hist = create_display_history(raw_hist)
yield display_hist, copy.deepcopy(raw_hist), None, ""
def reset():
global stop_generation
stop_generation = True
time.sleep(0.1)
return [], [], None, ""
demo = gr.Blocks(title="GLM-4.1V-9B-Thinking", theme=gr.themes.Soft())
with demo:
gr.Markdown(
"<div style='text-align:center;font-size:32px;font-weight:bold;margin-bottom:10px;'>GLM-4.1V-9B-Thinking</div>"
"<div style='text-align:center;color:red;font-size:16px;margin-bottom:20px;'>This demo uses the API version of the service for faster response.</div>"
"<div style='text-align:center;'><a href='https://huggingface.co/THUDM/GLM-4.1V-9B-Thinking'>Model Hub</a> | "
"<a href='https://github.com/THUDM/GLM-4.1V-Thinking'>Github</a> | "
"<a href='https://arxiv.org/abs/2507.01006'>Paper</a> | "
"<a href='https://www.bigmodel.cn/dev/api/visual-reasoning-model/GLM-4.1V-Thinking'>API</a> |"
"<a href='https://huggingface.co/spaces/THUDM/GLM-4.1V-9B-Thinking-Demo'>GPU Local Demo</a> </div>"
)
raw_history = gr.State([])
with gr.Row():
with gr.Column(scale=7):
chatbox = gr.Chatbot(
label="Chat",
type="messages",
height=600,
elem_classes="chatbot-container",
sanitize_html=False,
line_breaks=True
)
textbox = gr.Textbox(label="Message", lines=3)
with gr.Row():
send = gr.Button("Send", variant="primary")
clear = gr.Button("Clear")
with gr.Column(scale=3):
up = gr.File(label="Upload Files", file_count="multiple", file_types=["file"], type="filepath")
gr.Markdown("Supports images / videos / PPT / PDF")
gr.Markdown(
"The maximum supported input is 10 images or 1 video/PPT/PDF(less than 10 pages) in this demo. "
"You may upload only one file type at a time (such as an image, video, PDF, or PPT"
)
sys = gr.Textbox(label="System Prompt", lines=6)
send.click(
chat,
inputs=[up, textbox, raw_history, sys],
outputs=[chatbox, raw_history, up, textbox]
)
textbox.submit(
chat,
inputs=[up, textbox, raw_history, sys],
outputs=[chatbox, raw_history, up, textbox]
)
clear.click(
reset,
outputs=[chatbox, raw_history, up, textbox]
)
if __name__ == "__main__":
demo.launch() |