Spaces:
Running
Running
File size: 13,573 Bytes
2e8cf5f 9285448 b9d2790 2e8cf5f 6a6c565 74a40be 9285448 2e8cf5f 3fe1a1d 2e8cf5f 4873975 2e8cf5f dc70128 74a40be 2e8cf5f 74a40be 2e8cf5f 3fe1a1d 74a40be 2e8cf5f 74a40be 2e8cf5f 74a40be 2e8cf5f 6a6c565 2e8cf5f 74a40be 2e8cf5f 74a40be 2e8cf5f 74a40be 2e8cf5f c496671 9285448 74a40be 9285448 c496671 9285448 2e8cf5f 4bbaf2d 2e8cf5f 74a40be fdfa666 44dcb2b 2e8cf5f 74a40be 2e8cf5f b9d2790 c496671 74a40be 2e8cf5f 6a6c565 2e8cf5f b9d2790 2e8cf5f 6a6c565 74a40be 6a6c565 c496671 74a40be 6a6c565 2e8cf5f c496671 2e8cf5f c496671 2e8cf5f 4ebfd89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import threading
import time
import gradio as gr
import torch
from diffusers import CogVideoXPipeline
from diffusers.utils import export_to_video
from datetime import datetime, timedelta
from openai import OpenAI
import spaces
import moviepy.editor as mp
dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-2b", torch_dtype=dtype).to(device)
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:
You will only ever output a single video description per user request.
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""
def convert_prompt(prompt: str, retry_times: int = 3) -> str:
if not os.environ.get("OPENAI_API_KEY"):
return prompt
client = OpenAI()
text = prompt.strip()
for i in range(retry_times):
response = client.chat.completions.create(
messages=[
{"role": "system", "content": sys_prompt},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "a girl is on the beach"',
},
{
"role": "assistant",
"content": "A radiant woman stands on a deserted beach, arms outstretched, wearing a beige trench coat, white blouse, light blue jeans, and chic boots, against a backdrop of soft sky and sea. Moments later, she is seen mid-twirl, arms exuberant, with the lighting suggesting dawn or dusk. Then, she runs along the beach, her attire complemented by an off-white scarf and black ankle boots, the tranquil sea behind her. Finally, she holds a paper airplane, her pose reflecting joy and freedom, with the ocean's gentle waves and the sky's soft pastel hues enhancing the serene ambiance.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : "A man jogging on a football field"',
},
{
"role": "assistant",
"content": "A determined man in athletic attire, including a blue long-sleeve shirt, black shorts, and blue socks, jogs around a snow-covered soccer field, showcasing his solitary exercise in a quiet, overcast setting. His long dreadlocks, focused expression, and the serene winter backdrop highlight his dedication to fitness. As he moves, his attire, consisting of a blue sports sweatshirt, black athletic pants, gloves, and sneakers, grips the snowy ground. He is seen running past a chain-link fence enclosing the playground area, with a basketball hoop and children's slide, suggesting a moment of solitary exercise amidst the empty field.",
},
{
"role": "user",
"content": 'Create an imaginative video descriptive caption or modify an earlier caption for the user input : " A woman is dancing, HD footage, close-up"',
},
{
"role": "assistant",
"content": "A young woman with her hair in an updo and wearing a teal hoodie stands against a light backdrop, initially looking over her shoulder with a contemplative expression. She then confidently makes a subtle dance move, suggesting rhythm and movement. Next, she appears poised and focused, looking directly at the camera. Her expression shifts to one of introspection as she gazes downward slightly. Finally, she dances with confidence, her left hand over her heart, symbolizing a poignant moment, all while dressed in the same teal hoodie against a plain, light-colored background.",
},
{
"role": "user",
"content": f'Create an imaginative video descriptive caption or modify an earlier caption in ENGLISH for the user input: "{text}"',
},
],
model="glm-4-0520",
temperature=0.01,
top_p=0.7,
stream=False,
max_tokens=250,
)
if response.choices:
return response.choices[0].message.content
return prompt
@spaces.GPU(duration=240)
def infer(prompt: str, num_inference_steps: int, guidance_scale: float, progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
video = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=49,
guidance_scale=guidance_scale,
).frames[0]
return video
def save_video(tensor):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
video_path = f"./output/{timestamp}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
export_to_video(tensor, video_path)
return video_path
def convert_to_gif(video_path):
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./output", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
threading.Thread(target=delete_old_files, daemon=True).start()
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
CogVideoX-2B Huggingface Space🤗
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/THUDM/CogVideoX-2B">🤗 2B Model Hub</a> |
<a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
<a href="https://arxiv.org/pdf/2408.06072">📜 arxiv </a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
⚠️ This demo is for academic research and experiential use only.
Users should strictly adhere to local laws and ethics.
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
with gr.Row():
gr.Markdown(
"✨Upon pressing the enhanced prompt button, we will use [GLM-4 Model](https://github.com/THUDM/GLM-4) to polish the prompt and overwrite the original one.")
enhance_button = gr.Button("✨ Enhance Prompt(Optional)")
with gr.Column():
gr.Markdown("**Optional Parameters** (default values are recommended)<br>"
"Increasing the number of inference steps will produce more detailed videos, but it will slow down the process.<br>"
"50 steps are recommended for most cases.<br>"
"For the 5B model, 50 steps will take approximately 350 seconds.")
with gr.Row():
num_inference_steps = gr.Number(label="Inference Steps", value=50)
guidance_scale = gr.Number(label="Guidance Scale", value=6.0)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button = gr.File(label="📥 Download Video", visible=False)
download_gif_button = gr.File(label="📥 Download GIF", visible=False)
gr.Markdown("""
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<div style="text-align: center; font-size: 24px; font-weight: bold; margin-bottom: 20px;">
Demo Videos with 50 Inference Steps and 6.0 Guidance Scale.
</div>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>A detailed wooden toy ship with intricately carved masts and sails is seen gliding smoothly over a plush, blue carpet that mimics the waves of the sea. The ship's hull is painted a rich brown, with tiny windows. The carpet, soft and textured, provides a perfect backdrop, resembling an oceanic expanse. Surrounding the ship are various other toys and children's items, hinting at a playful environment. The scene captures the innocence and imagination of childhood, with the toy ship's journey symbolizing endless adventures in a whimsical, indoor setting.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/ea3af39a-3160-4999-90ec-2f7863c5b0e9" width="100%" controls autoplay></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>The camera follows behind a white vintage SUV with a black roof rack as it speeds up a steep dirt road surrounded by pine trees on a steep mountain slope, dust kicks up from its tires, the sunlight shines on the SUV as it speeds along the dirt road, casting a warm glow over the scene. The dirt road curves gently into the distance, with no other cars or vehicles in sight. The trees on either side of the road are redwoods, with patches of greenery scattered throughout. The car is seen from the rear following the curve with ease, making it seem as if it is on a rugged drive through the rugged terrain. The dirt road itself is surrounded by steep hills and mountains, with a clear blue sky above with wispy clouds.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/9de41efd-d4d1-4095-aeda-246dd834e91d" width="100%" controls autoplay></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>A street artist, clad in a worn-out denim jacket and a colorful bandana, stands before a vast concrete wall in the heart, holding a can of spray paint, spray-painting a colorful bird on a mottled wall.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/941d6661-6a8d-4a1b-b912-59606f0b2841" width="100%" controls autoplay></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.8em;">
<p>In the haunting backdrop of a war-torn city, where ruins and crumbled walls tell a story of devastation, a poignant close-up frames a young girl. Her face is smudged with ash, a silent testament to the chaos around her. Her eyes glistening with a mix of sorrow and resilience, capturing the raw emotion of a world that has lost its innocence to the ravages of conflict.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/938529c4-91ae-4f60-b96b-3c3947fa63cb" width="100%" controls autoplay></video>
</td>
</tr>
</table>
""")
def generate(prompt, num_inference_steps, guidance_scale, model_choice, progress=gr.Progress(track_tqdm=True)):
tensor = infer(prompt, num_inference_steps, guidance_scale, progress=progress)
video_path = save_video(tensor)
video_update = gr.update(visible=True, value=video_path)
gif_path = convert_to_gif(video_path)
gif_update = gr.update(visible=True, value=gif_path)
return video_path, video_update, gif_update
def enhance_prompt_func(prompt):
return convert_prompt(prompt, retry_times=1)
generate_button.click(
generate,
inputs=[prompt, num_inference_steps, guidance_scale],
outputs=[video_output, download_video_button, download_gif_button]
)
enhance_button.click(
enhance_prompt_func,
inputs=[prompt],
outputs=[prompt]
)
if __name__ == "__main__":
demo.launch()
|