File size: 14,027 Bytes
d0d35cc
 
74465a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0afca08
74465a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cd8dc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74465a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ec2346
74465a1
 
 
 
 
 
 
 
 
 
 
 
3c9122e
 
74465a1
 
 
 
 
 
3ec2346
ac99742
3b4754e
 
 
 
 
74465a1
 
 
 
9538ed4
74465a1
 
 
 
 
 
 
 
 
 
0afca08
74465a1
 
 
 
 
00059bc
 
 
74465a1
00059bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74465a1
35f429b
 
 
 
 
 
 
 
3539c9b
e18e089
0afca08
e18e089
35f429b
 
74465a1
0afca08
74465a1
 
 
00059bc
74465a1
bd14a5a
 
 
 
 
 
 
74465a1
 
 
bd14a5a
 
 
 
 
74465a1
 
 
 
 
 
 
 
bd14a5a
 
 
 
 
 
 
 
74465a1
 
 
 
 
 
 
 
 
 
 
 
6f3a03c
 
74465a1
 
 
 
 
 
6f3a03c
 
74465a1
 
 
 
 
 
 
 
3539c9b
74465a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5e00ca
7103ae4
74465a1
 
 
 
 
 
 
 
 
 
 
 
 
 
00059bc
 
 
 
 
 
 
74465a1
 
0afca08
 
 
 
 
bd14a5a
0afca08
 
 
 
 
e18e089
3539c9b
 
 
 
74465a1
 
3ec2346
 
74465a1
 
 
 
 
3ec2346
74465a1
3ec2346
 
 
 
 
0afca08
74465a1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import spaces

import os
import imageio
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler

from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
    FOV_to_intrinsics, 
    get_zero123plus_input_cameras,
    get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_glb
from src.utils.infer_util import remove_background, resize_foreground, images_to_video

import tempfile
from functools import partial

from huggingface_hub import hf_hub_download

import gradio as gr


def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False):
    """
    Get the rendering camera parameters.
    """
    c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
    if is_flexicubes:
        cameras = torch.linalg.inv(c2ws)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
    else:
        extrinsics = c2ws.flatten(-2)
        intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
        cameras = torch.cat([extrinsics, intrinsics], dim=-1)
        cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
    return cameras


def images_to_video(images, output_path, fps=30):
    # images: (N, C, H, W)
    os.makedirs(os.path.dirname(output_path), exist_ok=True)
    frames = []
    for i in range(images.shape[0]):
        frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255)
        assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \
            f"Frame shape mismatch: {frame.shape} vs {images.shape}"
        assert frame.min() >= 0 and frame.max() <= 255, \
            f"Frame value out of range: {frame.min()} ~ {frame.max()}"
        frames.append(frame)
    imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264')


###############################################################################
# Configuration.
###############################################################################

import shutil

def find_cuda():
    # Check if CUDA_HOME or CUDA_PATH environment variables are set
    cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')

    if cuda_home and os.path.exists(cuda_home):
        return cuda_home

    # Search for the nvcc executable in the system's PATH
    nvcc_path = shutil.which('nvcc')

    if nvcc_path:
        # Remove the 'bin/nvcc' part to get the CUDA installation path
        cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
        return cuda_path

    return None

cuda_path = find_cuda()

if cuda_path:
    print(f"CUDA installation found at: {cuda_path}")
else:
    print("CUDA installation not found")

config_path = 'configs/instant-mesh-large.yaml'
config = OmegaConf.load(config_path)
config_name = os.path.basename(config_path).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config

IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False

device = torch.device('cuda')

# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
    "sudo-ai/zero123plus-v1.2", 
    custom_pipeline="zero123plus",
    torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
    pipeline.scheduler.config, timestep_spacing='trailing'
)

# load custom white-background UNet
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)

pipeline = pipeline.to(device)

# load reconstruction model
print('Loading reconstruction model ...')
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model")
model = instantiate_from_config(model_config)
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)

print('Loading Finished!')


def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def preprocess(input_image, do_remove_background):

    rembg_session = rembg.new_session() if do_remove_background else None

    if do_remove_background:
        input_image = remove_background(input_image, rembg_session)
        input_image = resize_foreground(input_image, 0.85)

    return input_image


@spaces.GPU
def generate_mvs(input_image, sample_steps, sample_seed):

    seed_everything(sample_seed)
    
    # sampling
    z123_image = pipeline(
        input_image, 
        num_inference_steps=sample_steps
    ).images[0]

    show_image = np.asarray(z123_image, dtype=np.uint8)
    show_image = torch.from_numpy(show_image)     # (960, 640, 3)
    show_image = rearrange(show_image, '(n h) (m w) c -> (n m) h w c', n=3, m=2)
    show_image = rearrange(show_image, '(n m) h w c -> (n h) (m w) c', n=2, m=3)
    show_image = Image.fromarray(show_image.numpy())

    return z123_image, show_image


@spaces.GPU
def make3d(images):

    global model
    if IS_FLEXICUBES:
        model.init_flexicubes_geometry(device, use_renderer=False)
    model = model.eval()

    images = np.asarray(images, dtype=np.float32) / 255.0
    images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()     # (3, 960, 640)
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)        # (6, 3, 320, 320)

    input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device)
    render_cameras = get_render_cameras(batch_size=1, radius=2.5, is_flexicubes=IS_FLEXICUBES).to(device)

    images = images.unsqueeze(0).to(device)
    images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1)

    mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name
    print(mesh_fpath)
    mesh_basename = os.path.basename(mesh_fpath).split('.')[0]
    mesh_dirname = os.path.dirname(mesh_fpath)
    video_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.mp4")
    mesh_glb_fpath = os.path.join(mesh_dirname, f"{mesh_basename}.glb")

    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras)

        # # get video
        # chunk_size = 20 if IS_FLEXICUBES else 1
        # render_size = 384
        
        # frames = []
        # for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
        #     if IS_FLEXICUBES:
        #         frame = model.forward_geometry(
        #             planes,
        #             render_cameras[:, i:i+chunk_size],
        #             render_size=render_size,
        #         )['img']
        #     else:
        #         frame = model.synthesizer(
        #             planes,
        #             cameras=render_cameras[:, i:i+chunk_size],
        #             render_size=render_size,
        #         )['images_rgb']
        #     frames.append(frame)
        # frames = torch.cat(frames, dim=1)

        # images_to_video(
        #     frames[0],
        #     video_fpath,
        #     fps=30,
        # )

        # print(f"Video saved to {video_fpath}")

        # get mesh
        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=False,
            **infer_config,
        )

        vertices, faces, vertex_colors = mesh_out
        vertices = vertices[:, [1, 2, 0]]
        
        save_glb(vertices, faces, vertex_colors, mesh_glb_fpath)
        save_obj(vertices, faces, vertex_colors, mesh_fpath)
        
        print(f"Mesh saved to {mesh_fpath}")

    return mesh_fpath, mesh_glb_fpath


_HEADER_ = '''
<h2><b>Official 🤗 Gradio Demo</b></h2><h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2>

**InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture.

Code: <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>GitHub</a>. Techenical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>.

❗️❗️❗️**Important Notes:**
- Our demo can export a .obj mesh with vertex colors or a .glb mesh now. If you prefer to export a .obj mesh with a **texture map**, please refer to our <a href='https://github.com/TencentARC/InstantMesh?tab=readme-ov-file#running-with-command-line' target='_blank'>Github Repo</a>.
- The 3D mesh generation results highly depend on the quality of generated multi-view images. Please try a different **seed value** if the result is unsatisfying (Default: 42).
'''

_CITE_ = r"""
If InstantMesh is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/InstantMesh' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/InstantMesh?style=social)](https://github.com/TencentARC/InstantMesh)
---
📝 **Citation**

If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xu2024instantmesh,
  title={InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models},
  author={Xu, Jiale and Cheng, Weihao and Gao, Yiming and Wang, Xintao and Gao, Shenghua and Shan, Ying},
  journal={arXiv preprint arXiv:2404.07191},
  year={2024}
}
```

📋 **License**

Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.

📧 **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>bluestyle928@gmail.com</b>.
"""


with gr.Blocks() as demo:
    gr.Markdown(_HEADER_)
    with gr.Row(variant="panel"):
        with gr.Column():
            with gr.Row():
                input_image = gr.Image(
                    label="Input Image",
                    image_mode="RGBA",
                    sources="upload",
                    #width=256,
                    #height=256,
                    type="pil",
                    elem_id="content_image",
                )
                processed_image = gr.Image(
                    label="Processed Image", 
                    image_mode="RGBA", 
                    #width=256,
                    #height=256,
                    type="pil", 
                    interactive=False
                )
            with gr.Row():
                with gr.Group():
                    do_remove_background = gr.Checkbox(
                        label="Remove Background", value=True
                    )
                    sample_seed = gr.Number(value=42, label="Seed Value", precision=0)

                    sample_steps = gr.Slider(
                        label="Sample Steps",
                        minimum=30,
                        maximum=75,
                        value=75,
                        step=5
                    )

            with gr.Row():
                submit = gr.Button("Generate", elem_id="generate", variant="primary")

            with gr.Row(variant="panel"):
                gr.Examples(
                    examples=[
                        os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
                    ],
                    inputs=[input_image],
                    label="Examples",
                    cache_examples=False,
                    examples_per_page=12
                )

        with gr.Column():

            with gr.Row():

                with gr.Column():
                    mv_show_images = gr.Image(
                        label="Generated Multi-views",
                        type="pil",
                        width=379,
                        interactive=False
                    )

                # with gr.Column():
                #     output_video = gr.Video(
                #         label="video", format="mp4",
                #         width=379,
                #         autoplay=True,
                #         interactive=False
                #     )

            with gr.Row():
                with gr.Tab("OBJ"):
                    output_model_obj = gr.Model3D(
                        label="Output Model (OBJ Format)",
                        interactive=False,
                    )
                    gr.Markdown("Note: Downloaded .obj model will be flipped. Export .glb instead or manually flip it before usage.")
                with gr.Tab("GLB"):
                    output_model_glb = gr.Model3D(
                        label="Output Model (GLB Format)",
                        interactive=False,
                    )
                    gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")

            with gr.Row():
                gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''')

    gr.Markdown(_CITE_)

    mv_images = gr.State()

    submit.click(fn=check_input_image, inputs=[input_image]).success(
        fn=preprocess,
        inputs=[input_image, do_remove_background],
        outputs=[processed_image],
    ).success(
        fn=generate_mvs,
        inputs=[processed_image, sample_steps, sample_seed],
        outputs=[mv_images, mv_show_images]
        
    ).success(
        fn=make3d,
        inputs=[mv_images],
        outputs=[output_model_obj, output_model_glb]
    )

demo.launch()