File size: 16,773 Bytes
cb0dfa0
 
555fc86
cb0dfa0
 
 
b0d6593
555fc86
 
 
d479d7b
cb0dfa0
d479d7b
cb0dfa0
 
 
 
f6b0eeb
cb0dfa0
 
d479d7b
 
 
cb0dfa0
 
 
 
 
 
f6b0eeb
cb0dfa0
 
b0d6593
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b0eeb
 
 
b0d6593
f6b0eeb
 
 
 
 
 
 
 
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b0eeb
 
cb0dfa0
 
 
 
b0d6593
 
cb0dfa0
 
 
 
 
b0d6593
 
 
 
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d479d7b
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6b0eeb
 
cb0dfa0
 
b0d6593
cb0dfa0
 
 
 
d479d7b
 
cb0dfa0
 
 
 
 
 
 
 
 
d479d7b
 
cb0dfa0
 
 
 
 
 
 
 
d479d7b
cb0dfa0
 
d479d7b
cb0dfa0
 
d479d7b
 
 
cb0dfa0
 
d479d7b
 
 
cb0dfa0
d479d7b
 
 
cb0dfa0
 
 
 
 
d479d7b
 
 
 
 
 
 
 
 
 
cb0dfa0
 
 
 
d479d7b
cb0dfa0
 
 
 
 
 
 
 
 
d479d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0dfa0
 
 
 
d479d7b
f6b0eeb
 
 
 
 
 
d479d7b
 
f6b0eeb
d479d7b
 
f6b0eeb
 
d479d7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0dfa0
 
 
 
 
 
b0d6593
 
cb0dfa0
b0d6593
 
f6b0eeb
 
 
 
d479d7b
 
 
 
f6b0eeb
 
 
 
 
 
d479d7b
 
 
 
 
 
 
 
 
 
f6b0eeb
 
cb0dfa0
d479d7b
b0d6593
 
cb0dfa0
 
 
d479d7b
f6b0eeb
 
 
 
 
 
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d479d7b
cb0dfa0
 
de8d03b
cb0dfa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d479d7b
cb0dfa0
 
 
d479d7b
f6b0eeb
 
cb0dfa0
f6b0eeb
cb0dfa0
f6b0eeb
d479d7b
f6b0eeb
 
 
 
 
d479d7b
f6b0eeb
 
 
d479d7b
 
f6b0eeb
 
 
d479d7b
 
f6b0eeb
cb0dfa0
f6b0eeb
cb0dfa0
 
 
 
 
b0d6593
f6b0eeb
 
 
 
 
 
b0d6593
 
f6b0eeb
 
 
 
 
 
 
 
 
 
 
c9cf959
f6b0eeb
 
cb0dfa0
f6b0eeb
cb0dfa0
 
 
f6b0eeb
b0d6593
cb0dfa0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
#
import gradio as gr
import os
from ultralytics import YOLO

from google.cloud import vision

_api_key = os.environ["API_KEY"]
_project_id = os.environ["PROJECT_ID"]
client = vision.ImageAnnotatorClient(client_options={"quota_project_id": _project_id, "api_key": _api_key})
# client = vision.ImageAnnotatorClient()

AngTol = 10
import math
from scipy.spatial import KDTree
import io
from time import time
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import cv2
import sys
sys.path.insert(0, ".")
import classical
from typing import Union

modelPh = r'corners-best.pt'

model1DIM = 640
keypointModel = r'keypoints-best.pt'
minSz = 1280


_examples = [["example0.jpg", True],["example1.jpg",True], ["example2.jpg",False], ["example3.jpg",True]]


def unwarp_image(warped_image, src_points, dst_points, output_width, output_height):
    src_pts = np.array(src_points).astype(np.float64)
    dst_pts = np.array(dst_points).astype(np.float64)

    homography, mask = cv2.findHomography(src_pts, dst_pts)
    unwarped_image = cv2.warpPerspective(
        np.array(warped_image), homography, (output_width, output_height)
    )
    unwarped_image = Image.fromarray(unwarped_image)

    return unwarped_image


model0 = None

def get_load_PhModel():
    global model0
    if model0 ==None:
        tic = time()
        model0 = YOLO(modelPh)  # load a custom model
        print(f"model0 load took: {time()-tic:.2g}")
    return model0


def get_corners(results:list, img):
    global model1DIM
    #  keypoints ie corners for homography
    KP = "topLeft topRight bottomRight bottomLeft".split()
    r = results[0]
    planars = []
    kps = []
    for kpco in r.keypoints.xy.cpu():#.squeeze()
        # assert len(kpco)>0, "not found"
        keypoints = {k:v.numpy() for v,k in zip(kpco,KP)}
        sz = model1DIM
        dstCorners = np.array([(0,0),(sz,0),(sz,sz),(0,sz)])
        planar = unwarp_image(img, np.array(list(keypoints.values())),dstCorners, sz,sz)
        # planar.save("temp-ph.jpg")
        planars.append(planar)
        kps.append(keypoints)
    return planars, kps


model = None

def get_load_KpModel():
    global model
    if model == None:
        tic = time()
        model = YOLO(keypointModel)  # load a custom model
        print(f"model load took: {time()-tic:.2g}")
    return model

def preprocessImg(planar):
    img = planar.convert('RGB').copy()
    w,h = img.size
    smalldl = abs(w-h)/h <0.05
    _ = max(w,h)
    DIM = w
    if w!=h and smalldl:
        img = img.resize((_,_))
    elif w!=h:
        img = img.resize((_,_))

    if _ < minSz:
        img = img.resize((minSz,minSz))
    return img


def get_keypoints(results:list):
    if len(results) !=1: 
        raise gr.Error("found multiple dials. expected only 1")
    r = results[0]
    # ordering
    kp = "start_kp center end_kp tip".split()
    kpco = r.keypoints.xy.cpu().squeeze()
    keypoints = {k:v.numpy() for v,k in zip(kpco,kp)}
    if len(keypoints["center"])!=2:
        raise gr.Error("center keypoint not found")
    elif len(keypoints["tip"])!=2:
        raise gr.Error("tip keypoint not found")
    return keypoints

def cosangle(a,b, ignoreRot=False):
    na = np.linalg.norm(a)
    nb = np.linalg.norm(b)
    angle2tip = np.rad2deg(np.arccos(np.dot(a, b)/(na*nb)))
    angle2tip
    rotdir = np.cross(a,b) < 0
    if rotdir and not ignoreRot:
        return 360-angle2tip
    return angle2tip


def calculate_sweep_angles(keypoints:dict): 
    # get sweep angles start->tip
    a = keypoints["start_kp"] - keypoints["center"]
    b = keypoints["tip"] - keypoints["center"]
    angle2tip = cosangle(a, b)
    # get sweep angles start->end
    b = keypoints["end_kp"] - keypoints["center"]
    totalAngle = cosangle(a, b)
    return angle2tip, totalAngle


def get_text_from_image(client, path_or_img)->Union[list[dict],Exception ]:
    if type(path_or_img)==str:
        with open(path_or_img, "rb") as image_file:
            content = image_file.read()
    else:
        buf = io.BytesIO()
        path_or_img.save(buf, format="JPEG")
        content = buf.getvalue()

    image = vision.Image(content=content)

    response = client.text_detection(image=image)
    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

    texts = response.text_annotations
    contents = [ {"text": found.description, "boxCorners": [ (vert.x, vert.y) for vert in found.bounding_poly.vertices]} for found in texts]
    return contents

def median_point_of_bounding_box(x1, y1, x2, y2, x3, y3, x4, y4):
    x_coords = [x1, x2, x3, x4]
    y_coords = [y1, y2, y3, y4]
    x_median = sum(x_coords) / len(x_coords)
    y_median = sum(y_coords) / len(y_coords)
    return x_median, y_median

def to_numeric(text:str):
    try:
        return float(text.replace(",","."))
    except:
        pass
    return None

def result_as_validvalue(contents:list[dict])->tuple[list[dict], list[str]]:
    # only valid values and sort min to max
    valid = []
    other = []
    for f in contents:
        t = f["text"]
        value =  to_numeric(t)
        if "\n" in t:
            continue
        elif value == None and t!="":
            other.append(t)
            continue
        b = f["boxCorners"]
        m = median_point_of_bounding_box(*np.array(b).flatten())
        a = cv2.contourArea(np.array(b)) / len(f["text"])
        valid.append({"text":f["text"], "value": value, "mid": m, "apchar":a, "box":b})

    valid.sort(key=lambda e: e["value"])
    return valid, list(set(other))


distance = lambda a,b : np.sqrt(np.square(np.array(a)-np.array(b)).sum())

def determine_ocr_neighbors(keypoints, valid:list[dict], nearestIx)->tuple[ list, float ]:
    center = np.array(keypoints["center"])
    def cosangle(a,b):
        na = np.linalg.norm(a)
        nb = np.linalg.norm(b)
        ang = np.rad2deg(np.arccos(np.dot(a, b)/(na*nb)))
        rotdir = -1 if np.cross(a,b) < 0 else 1
        return ang , rotdir
    # compute angles between values
    values = [valid[0]]
    values[0]["dang"] = 0

    values[0]["ds"] = distance(center, values[0]["mid"])
    rates = []
    angS = 0
    for v in valid[1:]:
        u = v.copy()
        u["dv"] = v["value"] - values[-1]["value"]
        a = np.array(values[-1]["mid"]) - center 
        b = np.array(v["mid"]) - center
        ang,_ = cosangle(a,b)
        u["rot"] = _
        angS += ang
        u["dang"] = ang
        # u["ddir"] = rot # counter clockwise?
        u["dvda"] = u["dv"] / ang
        rates.append(u["dvda"])
        #
        # u["ds"] = distance(values[-1]["mid"], u["mid"])
        u["ds"] = distance(center, u["mid"])
        values.append(u)

    if nearestIx[0]==0:
        rates.insert(0, rates[0])

    rates = np.array(rates)
    # filter outlier rate
    # ix = np.bitwise_and(rates> np.quantile(rates, 0.05) , rates<np.quantile(rates, 0.95))
    # rate = rates[ix].mean()
    meanAng = angS/len(valid)
    if len(rates)>=6:
        ix = np.bitwise_and(rates> np.quantile(rates, 0.05) , rates<np.quantile(rates, 0.95))
        if not np.all(~ix):
            rates = rates[ix]
        rate = rates.mean()
    elif len(nearestIx)==2:
        n = [nearestIx[0], nearestIx[1]]
        rank = np.hstack([np.arange(0,n[0]+1)[::-1], np.arange(n[1],len(rates))-n[1]]).astype(float)
        weights = np.exp(-2*rank)
        weights /= weights.sum()
        rate = np.average(rates, weights=weights)
    elif len(nearestIx)==1:
        rate = rates[nearestIx[0]]

    rate, meanAng
    return values, rate



def vec_angle(v1, v2)->tuple[float, bool]:
    vector1 = v1/np.linalg.norm(v1)
    vector2 = v2/np.linalg.norm(v2)
    angle_rad = np.arctan2(np.cross(vector1, vector2), np.dot(vector1, vector2))
    return math.degrees(angle_rad)


def angles_from_tip(keypoints, values, nearestIx):
    center = keypoints["center"]
    tip = keypoints["tip"] - center    
    N = len(nearestIx)
    start = nearestIx[0] 
    if N==2 or (N==1 and nearestIx[0]==len(values)-1):
        v = values[start]
        a = v["mid"] - center
        ang = vec_angle(a,tip)
        cumsum = 0
        for i in range(start,-1,-1):
            values[i]["before"] = abs(ang)+cumsum
            cumsum += values[i]["dang"]

    if N==2 or (N==1 and nearestIx[0]==0):
        if N==1:
            start = nearestIx[0]
        else:
            start = nearestIx[1]

        v = values[start]
        a = v["mid"] - center
        ang = vec_angle(a,tip)

        values[start]["dang"] = 0
        cumsum = 0
        for i in range(start, len(values)):
            cumsum -= values[i]["dang"]
            values[i]["before"] = -abs(ang)+cumsum

    return values



def sort_clockwise_with_start(coordinates, x_center, y_center, starting_index):
    angles = [math.atan2(y - y_center, x - x_center) for x, y in coordinates]
    sorted_indices = sorted(range(len(angles)), key=lambda i: (angles[i] - angles[starting_index] + 2 * math.pi) % (2 * math.pi))
    return sorted_indices, angles

def remove_nonrange_value(valid):
    # meanArea = np.mean([e["apchar"] for e in valid])
    meanArea = np.mean([e["apchar"] for e in valid if "apchar" in e])
    cutoff = 0.5
    # valid = list(filter(lambda e: abs(e["apchar"]-meanArea)/meanArea < cutoff, valid))
    valid = list(filter(lambda e:  True if e["text"]=="tip" else abs(e["apchar"]-meanArea)/meanArea < cutoff, valid))
    return valid



def check_tip(img, keypoints):

    lines = classical.get_needle_line(np.array(img))
    if lines is None or len(lines)==0:
        return False
    # lines = lines.squeeze()
    if lines.ndim==1:
        lines = np.expand_dims(lines,axis=0)
    # nearest line to center,
    dist2 = lambda a,b: (a[0]-b[0])**2 + (a[1]-b[1])**2
    center = keypoints["center"]
    ds = [ min(dist2(center, e[:2]), dist2(center, e[2:])) for e in lines] # closest line to center
    ix= np.argsort(ds)
    ix, ds
    l = lines[ix][0]
    a = np.array([l[0]-l[2], l[1]-l[3]])
    a
    tip = keypoints["tip"] - center
    ang = vec_angle(a, tip)
    if abs(ang) > AngTol:
        # furthest point from center is tip
        if dist2(l[:2],center) > dist2(l[2:],center):
            keypoints["tip"] = l[:2]
        else:
            keypoints["tip"] = l[2:]
        print("new point ", keypoints["tip"])
        return True
    return False


def get_needle_value(img, keypoints):

    tic2 = time()
    contents = get_text_from_image(client, img)
    toc = time()
    print(f"ocr took: {toc-tic2:.1g}")
    if 0==len(contents):
        raise gr.Error("failed to get any text/number")
    valid,other = result_as_validvalue(contents)
    if 0==len(valid):
        raise gr.Error("failed to get any number")

    valid.append({"text":"tip", "mid":keypoints["tip"]})
    ix,an = sort_clockwise_with_start([e["mid"] for e in valid],*keypoints["center"], 0)
    valid = [valid[i] for i in ix]
    # assert valid[-1]["text"]!="tip" and valid[0]["text"]!="tip", "failed to properly detect tip"
    valid = remove_nonrange_value(valid)

    i=0
    nearestIx=[]
    for i,v in enumerate(valid):
        if "tip"==v["text"]:
            nearestIx = [i-1,i]
            valid.pop(i)
            break
    if len(valid)==nearestIx[1] or -1==nearestIx[0]:
        # nearestIx[1] = 0 # tip is out of bounds
        tip = keypoints["tip"] - keypoints["center"]
        b = valid[0]["mid"] - keypoints["center"]
        a = valid[-1]["mid"] - keypoints["center"]
        if abs(vec_angle(tip,a)) < abs(vec_angle(tip, b)):
            nearestIx = [len(valid)-1]
        else:
            nearestIx = [0]
    # nearest to
    nearestIx = np.array(nearestIx)

    center = np.array(keypoints["center"])
    values, rate = determine_ocr_neighbors(keypoints, valid, nearestIx)
    if len(values)<2:
        raise gr.Error("failed to find at least 2 OCR number values")

    # import pandas as pd
    # print(pd.DataFrame.from_dict(values))
    # print(nearestIx)

    # tree = KDTree([v["mid"] for v in values])
    # # find bounding ocr values of tip
    # dist, nearestIx = tree.query(keypoints["tip"],k=2)
    # nearestIx.sort()
    # dist, nearestIx 

    values = angles_from_tip(keypoints, values, nearestIx)
    # compare against start and end
    c = keypoints["center"]
    tip = keypoints["tip"] - c

    tipValues = []
    for i in range(len(values)):
        v = values[i]
        a = v["mid"] - c
        ang = vec_angle(a,tip)
        before = v["before"] 
        startValue = v["value"]
        angle2tip = ang
        needleVal = -1

        angle2tip = before

        needleVal = angle2tip * rate + startValue # tip value from nearest Ix
        tipValues.append(needleVal)
        print(f"{i}, {ang:.2f}, {before:.2f}, @{needleVal:.2f}, {startValue}")

    # print(f"total took: {toc-tic:.1g}")
    tipValues = np.array(tipValues)

    # debug(img, contents, keypoints)

    startValue= float(values[0]["value"])
    tipvalue= round(float(tipValues[nearestIx].mean()),2)
    endValue= float(values[-1]["value"])

    return {"startValue": startValue, "tipvalue": tipvalue, "endValue": endValue, "unitPerDeg": float(rate), "otherText": list(set(other))}


# debug draw
def corners2bbox(C):
    p = np.array(C)
    s,e = p.min(axis=0).astype(int), p.max(axis=0).astype(int)
    return s, e

def debug(img, contents, keypoints):
    draw = ImageDraw.Draw(img)

    for f in contents:
        b = f["boxCorners"]
        s,e = corners2bbox(b)
        c = (255,0,0)
        draw.rectangle((*s,*e), fill=None, outline=c, width=1)
        m = median_point_of_bounding_box(*np.array(b).flatten())
        draw.point(m, (255,0,255))
    img

    for v,c in zip(keypoints.values(), [(255,0,0), (0,255,0), (0,0,255),(255,0,255)]):
        s = np.array(v)-1
        e = np.array(v)+1
        draw.rectangle((*s,*e), c)
    img.save("temp-ocr.jpg")
    print("saved debug img")


def predict(img, detect_gauge_first):
    KPs  = []
    if detect_gauge_first:
        model0 = get_load_PhModel()
        results = model0.predict(img)
        phimgs,KPs = get_corners(results, img)
        if len(phimgs)==0:
            raise gr.Error("no gauge found")
    else:
        phimgs = [img.copy()]

    payloads = []
    for i,phimg in enumerate(phimgs):
        model = get_load_KpModel()
        phimg = preprocessImg(phimg)
        results = model.predict(phimg)
        keypoints = get_keypoints(results)
        angle2tip, totalAngle = calculate_sweep_angles(keypoints)
        angReplaced = check_tip(phimg, keypoints)
        phimg = phimg.filter(ImageFilter.UnsharpMask(radius=3))
        payload = get_needle_value(phimg, keypoints)
        payload["angleToTip"] = round(float(angle2tip),2)
        if angReplaced:
            payload["angleToTip"] = None
        payload["totalAngle"] = round(float(totalAngle),2)
        for k,v in payload.items():
            print(k, type(v),v)
        if len(KPs)>i:
            payload["bbox"] = {k:v.astype(int).tolist() for k,v in KPs[i].items()}
        payloads.append(payload)

    return payloads


def test(img, detect_gauge_first):
    return {"msg":str(img.size), "other": detect_gauge_first}


description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://synanthropic.com/reading-analog-gauge' target='_blank'><b>Reading Analog Gauges: Automate Gauge Readings with AI in Days, Not Months
</b></a>.<br>
<br>
This model reads analog dial gauge by detecting, applying perspective correction, and gauge reading. 
<br>
The model was build <i><strong>only</strong></i> with synthetic data (e.g. examples).<br>
Hence, it <i>probably</i> will not work on significantly different images - give it a try. Let us know, so we can keep improving.<br>
<br>
You can read more about it [here](https://synanthropic.com/reading-analog-gauge).
<br>
<br>
❗️Usage steps:<br>
1️⃣ Upload an image with analog dial gauge with readable values. The gauge face in the uploaded image should <b>occupy the majority of the image</b>.<br>
2️⃣ If the image has only one gauge and is a direct flat view, uncheck <strong>detect gauge first</strong>.</br>
3️⃣ Click the <b>Submit</b> button to start inference.<br>
<br>
"""

gr.Interface(title="Reading Analog Gauges",
             description=description,
             fn=predict,
             inputs=[
                 gr.Image(type="pil", sources=["upload"],streaming=False, min_width=640),
                 gr.Checkbox(True, label="detect gauge first", info="if input image is zoomed in on only one gauge, uncheck box")
                 ],
             outputs="json",
             examples=_examples,
             allow_flagging="never",
             cache_examples=True)\
    .launch()