File size: 4,425 Bytes
423a42f
822dfd5
dd5f028
 
99d7e90
6257584
dd5f028
1af9f6b
509ca73
6d8186b
6257584
ec2738b
7497699
 
 
 
a2be7db
10f9ea6
333978a
 
 
 
 
 
0204bd8
5aecc17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f9ea6
1af9f6b
8b77a26
5aecc17
e60d9fc
 
 
 
10f9ea6
e60d9fc
09a4a4b
 
 
c4de2a2
e60d9fc
09a4a4b
 
 
 
 
 
 
 
 
 
 
 
 
5abdf22
 
 
09a4a4b
10f9ea6
e60d9fc
ccb7aa0
370c257
24c6700
dd5f028
24c6700
5aecc17
1af9f6b
 
 
 
 
24c6700
 
 
c4de2a2
25f7cba
0c5f3f6
1af9f6b
423a42f
 
 
 
 
 
 
 
 
 
 
 
 
e947bcb
c34d039
24c6700
 
 
25f7cba
 
24c6700
5abdf22
 
 
24c6700
10f9ea6
423a42f
ccb7aa0
370c257
24c6700
c672f84
509ca73
1af9f6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from huggingface_hub import InferenceClient

import random

from flask import Flask, request, jsonify, redirect, url_for
from flask_cors import CORS

client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")

app = Flask(__name__)
CORS(app)
    
@app.route('/')
def home():
    return jsonify({"message": "Welcome to the Recommendation API!"})


def format_prompt(message):
    # Generate a random user prompt and bot response pair
    user_prompt = "UserPrompt"
    bot_response = "BotResponse"

    return f"<s>[INST] {user_prompt} [/INST] {bot_response}</s> [INST] {message} [/INST]"


@app.route('/ai_mentor', methods=['POST'])
def ai_mentor():
    data = request.get_json()
    message = data.get('message')

    if not message:
        return jsonify({"message": "Missing message"}), 400

    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    # Define prompt for the conversation
    prompt = f""" prompt:
     Act as an mentor
    User: {message}"""

    formatted_prompt = format_prompt(prompt)

    try:
        # Generate response from the Language Model
        response = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)

        return jsonify({"response": response}), 200
    except Exception as e:
        return jsonify({"message": f"Failed to process request: {str(e)}"}), 500


@app.route('/get_course', methods=['POST'])
def get_course():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0


    content = request.json
    user_degree = content.get('degree')
    user_stream = content.get('stream')
    #user_semester = content.get('semester')

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    prompt = f""" prompt: 
    You need to act like as recommendation engine for course recommendation for a student based on below details.
    Degree: {user_degree}
    Stream: {user_stream}
    Based on above details recommend the courses that relate to the above details 
    Note: Output should be list in below format:
    [course1, course2, course3,...]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})


@app.route('/get_mentor', methods=['POST'])
def get_mentor():
    temperature = 0.9
    max_new_tokens = 256
    top_p = 0.95
    repetition_penalty = 1.0

    content = request.json
    user_degree = content.get('degree')
    user_stream = content.get('stream')
    #user_semester = content.get('semester')
    courses = content.get('courses')
    mentors_data= content.get('mentors_data')

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    prompt = f""" prompt:
    You need to act like as recommendataion engine for mentor recommendation for student based on below details also the list of mentors with their experience is attached.
    Degree: {user_degree}
    Stream: {user_stream}
    courses opted:{courses}
    Mentor list= {mentors_data}
    Based on above details recommend the mentor that realtes to above details 
    Note: Output should be list in below format:
    [mentor1,mentor2,mentor3,...]
    Return only answer not prompt and unnecessary stuff, also dont add any special characters or punctuation marks
    """
    formatted_prompt = format_prompt(prompt)

    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
    return jsonify({"ans": stream})


if __name__ == '__main__':
    app.run(debug=True)