File size: 17,957 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import logging
import os
import shutil
import math
import sys
import numpy as np
from tensorboardX import SummaryWriter
from tqdm import tqdm
from typing import Iterable
from pathlib import Path
from time import time
import datetime
import wandb
import cv2

import torch
from torchvision.utils import save_image
from torchvision.transforms import functional as TF

import utils.misc
from modules.components import make_components
import utils.misc as misc
from utils.plot import plot_samples_per_epoch, plot_val_samples
from utils.metrics import calculate_batch_psnr, calculate_batch_ssim
from utils.flowvis import flow2img
from utils.padder import InputPadder
from modules.loss import make_loss_dict
from modules.lr_scheduler import make_lr_scheduler
from modules.optimizer import make_optimizer
from modules.models import make, register
from modules.models.inference_video import inference_demo
from modules.models.unimatch.unimatch import UniMatch


@register('base_model')
class BaseModel:
    def __init__(self, cfgs):
        self.cfgs = cfgs
        self.device = torch.cuda.current_device()

        self.current_iteration = 0
        self.current_epoch = 0
        self.model = make_components(self.cfgs['model'])
        self.loss_dict = make_loss_dict(cfgs['loss'])

        self.logger = logging.getLogger(self.cfgs['model']['name'])
        self.move_components_to_device(cfgs['mode'])
        self.model_without_ddp = self.model
        if cfgs['distributed']:
            self.model = torch.nn.parallel.DistributedDataParallel(self.model, device_ids=[cfgs['gpu']])
            self.model_without_ddp = self.model.module
        # self.model = torch.compile(self.model)
        self.optimizer = make_optimizer(self.model_without_ddp.parameters(), self.cfgs['optimizer'])
        self.lr_scheduler = make_lr_scheduler(self.optimizer, cfgs['lr_scheduler'])
        # if self.cfgs['enable_wandb']:
        #     wandb.watch(self.model_without_ddp, log="all", log_freq=100)
        print(f'Total params: {self.count_parameters()}')
        
#         self.flow_extractor = UniMatch(feature_channels=128,
#                                        num_scales=2,
#                                        upsample_factor=8//2,
#                                        num_head=1,
#                                        ffn_dim_expansion=4,
#                                        num_transformer_layers=6,
#                                        reg_refine=True,
#                                        task='flow')
#         fe_sd = torch.load('./pretrained/gmflow-scale2-regrefine6-mixdata-train320x576-4e7b215d.pth')['model']
#         print(self.flow_extractor.load_state_dict(fe_sd))
#         for n,p in self.flow_extractor.named_parameters():
#             p.requires_grad = False
#         self.flow_extractor = self.flow_extractor.to(self.device)

    def load_checkpoint(self, file_path):
        """
        Load checkpoint
        """
        checkpoint = torch.load(file_path, map_location="cpu")

        self.current_epoch = checkpoint['epoch']
        self.current_iteration = checkpoint['iteration']
        self.model_without_ddp.load_state_dict(checkpoint['model'])
        self.optimizer.load_state_dict(checkpoint['optimizer'])
        self.lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        self.logger.info('Chekpoint loaded successfully from {} at epoch: {} and iteration: {}'.format(
            file_path, checkpoint['epoch'], checkpoint['iteration']))
        self.move_components_to_device(self.cfgs['mode'])
        return self.current_epoch

    def load_pretrained(self, file_path):
        """
        Load checkpoint
        """
        checkpoint = torch.load(file_path, map_location="cpu")
#         for key in list(checkpoint.keys()):
#             checkpoint[key.replace('module.', '')] = checkpoint.pop(key)
        for key in list(checkpoint.keys()):
            checkpoint['module.'+key] = checkpoint.pop(key)
        if 'state_dict' in checkpoint.keys():
            self.model.load_state_dict(checkpoint['state_dict'])
        else:
            self.model.load_state_dict(checkpoint)
        self.logger.info('Pretrained model loaded successfully from {} '.format(
            file_path))
        self.move_components_to_device(self.cfgs['mode'])
        return self.current_epoch

    def save_checkpoint(self, file_name, is_best=0):
        """
        Save checkpoint
        """
        state = {
            'epoch': self.current_epoch,  # because epoch is used for loading then this must be added + 1
            'iteration': self.current_iteration,
            'model': self.model_without_ddp.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'lr_scheduler': self.lr_scheduler.state_dict()
        }

        misc.save_on_master(state, os.path.join(self.cfgs['checkpoint_dir'], file_name))

        if is_best and misc.is_main_process():
            shutil.copyfile(os.path.join(self.cfgs['checkpoint_dir'], file_name),
                            os.path.join(self.cfgs['checkpoint_dir'], 'model_best.pth'))

    def adjust_learning_rate(self, epoch):
        """
        Adjust learning rate every epoch
        """
        self.lr_scheduler.step()

    def train_one_epoch(self, train_loader: Iterable, epoch: int, max_norm: float = 0):
        """
        Training step for each mini-batch
        """
        self.current_epoch = epoch
        self._reset_metric()

        self.model.train()

        header = 'Epoch: [{}]'.format(epoch)
        print_freq = 100
        for input_dict in self.metric_logger.log_every(train_loader, print_freq, header):            
            input_dict = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in input_dict.items()}
            result_dict, extra_dict = self.model(**input_dict)
            imgt_pred = result_dict['imgt_pred']
            loss = torch.Tensor([0]).to(self.device)
            losses = dict()
            for k, v in self.loss_dict.items():
                losses[k] = v(**result_dict, **input_dict)
                loss += losses[k]

            imgt_pred = torch.clamp(imgt_pred, 0, 1)
            self.optimizer.zero_grad()
            loss.backward()
            if 'gradient_clip' in self.cfgs:
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.cfgs['gradient_clip'])
            self.optimizer.step()
            self.lr_scheduler.step()

            self.metric_logger.update(loss=loss, **losses)
            self.metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
            if misc.is_main_process() and self.current_iteration % print_freq == 0:
                nsample = 4
                img0_p, img1_p, gt_p, imgt_pred_p = input_dict['img0'][:nsample].detach(), input_dict['img1'][:nsample].detach(), \
                input_dict['imgt'][:nsample].detach(), imgt_pred[:nsample].detach()
                overlapped_img = img0_p * 0.5 + img1_p * 0.5

                flowfwd = flow2img(result_dict['flowfwd'][:nsample].detach())
                if self.cfgs['train_dataset']['args']['flow'] != 'none':
                    flowfwd_gt = flow2img(input_dict['flowt0'][:nsample])
#                     figure = torch.stack([overlapped_img, imgt_pred_p, flowfwd, gt_p])
                    figure = torch.stack([overlapped_img, imgt_pred_p, flowfwd])
#                    figure = torch.stack(
#                        [overlapped_img, imgt_pred_p, flowfwd, flowfwd_gt, gt_p])
                else:
                    figure = torch.stack(
                        [overlapped_img, imgt_pred_p, flowfwd, gt_p])
                figure = torch.transpose(figure, 0, 1).reshape(-1, 3, self.cfgs['train_dataset']['args']['patch_size'],
                                                               self.cfgs['train_dataset']['args']['patch_size'])
                image = plot_samples_per_epoch(figure, os.path.join(self.cfgs['output_dir'], "imgs_train"),
                                               self.current_epoch, self.current_iteration, nsample)
                self.summary_writer.add_scalar("Train/loss", loss, self.current_iteration)
                for k, v in losses.items():
                    self.summary_writer.add_scalar(f'Train/loss_{k}', v, self.current_iteration)
                self.summary_writer.add_scalar("Train/LR", self.lr_scheduler.get_last_lr(), self.current_iteration)
                # self.summary_writer.add_image("Train/image", image, self.current_iteration)
                if self.cfgs['enable_wandb']:
                    wandb.log({"loss": loss}, step=self.current_iteration)
                    for k, v in losses.items():
                        wandb.log({f'loss_{k}': v}, step=self.current_iteration)
                    wandb.log({"lr": torch.Tensor(self.lr_scheduler.get_last_lr())},
                              step=self.current_iteration)
                    if self.current_iteration % (print_freq * 10) == 0:
                        wandb.log({"Image": wandb.Image(image)}, step=self.current_iteration)

            self.current_iteration += 1

            # gather the stats from all processes
        self.metric_logger.synchronize_between_processes()
        self.current_epoch += 1
        if utils.misc.is_main_process():
            self.logger.info(f"Averaged training stats: {self.metric_logger}")

    @torch.no_grad()
    def validate(self, val_loader):
        """
        Validation step for each mini-batch
        """
        self.model.eval()

        self.metric_logger = misc.MetricLogger(delimiter="  ")
        self.metric_logger.add_meter('psnr', misc.SmoothedValue(window_size=1, fmt='{value:.2f}'))
        self.metric_logger.add_meter('ssim', misc.SmoothedValue(window_size=1, fmt='{value:.2f}'))
        header = 'Test:'
        psnr_dict = {}

        print_freq = 10

        for input_dict in self.metric_logger.log_every(val_loader, print_freq, header):
            input_dict = {k: v.to(self.device) if isinstance(v, torch.Tensor) else v for k, v in input_dict.items()}
            img0 = input_dict['img0']
            imgt = input_dict['imgt']
            img1 = input_dict['img1']
            result_dict, extra_dict = self.model(**input_dict)

            scene_names = input_dict['scene_name']

            imgt_pred = result_dict['imgt_pred']
            
#             folder = os.path.join('../datasets/Vimeo90K/asdf/', scene_names[0])
#             os.makedirs(folder, exist_ok=True)
#             cv2.imwrite(os.path.join(folder, 'im2_pred.png'), (imgt_pred[0].clamp(0,1).cpu().detach()*255).permute(1,2,0).numpy().astype(np.uint8)[:,:,::-1])
#             torch.save(result_dict['flowfwd'][0].cpu().detach(), os.path.join(folder, 'flow_fwd.flo'))
#             torch.save(result_dict['flowbwd'][0].cpu().detach(), os.path.join(folder, 'flow_bwd.flo'))
            
            psnr, psnr_list = calculate_batch_psnr(imgt, imgt_pred)
            ssim, bs = calculate_batch_ssim(imgt, imgt_pred)
            self.metric_logger.update(psnr={'value': psnr, 'n': len(psnr_list)},
                                      ssim={'value': ssim, 'n': len(psnr_list)})
            if (self.current_epoch!=0) and ((self.current_epoch % self.cfgs['vis_every'] == 0) or (self.cfgs['mode'] != 'train' and self.cfgs['test_dataset']['save_imgs'])):
                for i in range(len(scene_names)):
                    psnr_dict[scene_names[i]] = float(psnr_list[i])
                    if self.cfgs['mode'] == "test":
                        scene_path = os.path.join(self.cfgs['output_dir'], "imgs_test",
                                                  f"{self.cfgs['test_dataset']['name']}_{self.cfgs['test_dataset']['args']['split']}",
                                                  scene_names[i])
                    else:
                        scene_path = os.path.join(self.cfgs['output_dir'], "imgs_val",
                                                  f"{self.cfgs['test_dataset']['name']}_{self.cfgs['test_dataset']['args']['split']}",
                                                  scene_names[i])
                    Path(scene_path).mkdir(exist_ok=True, parents=True)
                    save_image(img0[i], os.path.join(scene_path, "img0.png"))
                    save_image(imgt_pred[i], os.path.join(scene_path, "imgt_pred.png"))
                    save_image(imgt[i], os.path.join(scene_path, "imgt.png"))
                    save_image(img1[i], os.path.join(scene_path, "img1.png"))
                    save_image((img1[i] + img0[i]) / 2, os.path.join(scene_path, "overlayedd.png"))
                    save_image(flow2img(result_dict['flowfwd'])[i], os.path.join(scene_path, "flow_fwd.png"))
                    save_image(flow2img(result_dict['flowbwd'])[i], os.path.join(scene_path, "flow_bwd.png"))
                    # save_image(flow2img(result_dict['flow0_pred'][1])[i], os.path.join(scene_path, "flow_fwd_2.png"))
                    # save_image(flow2img(result_dict['flow1_pred'][1])[i], os.path.join(scene_path, "flow_bwd_2.png"))

            # gather the stats from all processes
        # self.metric_logger.synchronize_between_processes()
        self.logger.info(f"Averaged validate stats:{self.metric_logger.print_avg()}")
        if (self.current_epoch!=0) and ((self.current_epoch % self.cfgs['vis_every'] == 0) or (self.cfgs['mode'] != 'train' and self.cfgs['test_dataset']['save_imgs'])):
            psnr_str = []
            psnr_dict = sorted(psnr_dict.items(), key=lambda item: item[1])
            for key, val in psnr_dict:
                psnr_str.append("{}: {}".format(key, val))
            psnr_str = "\n".join(psnr_str)
            if self.cfgs['mode'] == "test":
                outdir = os.path.join(self.cfgs['output_dir'], "imgs_test",
                                      f"{self.cfgs['test_dataset']['name']}_{self.cfgs['test_dataset']['args']['split']}")
            else:
                outdir = os.path.join(self.cfgs['output_dir'], "imgs_val",
                                      f"{self.cfgs['test_dataset']['name']}_{self.cfgs['test_dataset']['args']['split']}")
            with open(os.path.join(outdir, "results.txt"), "w") as f:
                f.write(psnr_str)
        if misc.is_main_process() and self.cfgs['mode'] == 'train':
            self.summary_writer.add_scalar("Val/psnr", self.metric_logger.psnr.global_avg, self.current_epoch)
            self.summary_writer.add_scalar("Val/ssim", self.metric_logger.ssim.global_avg, self.current_epoch)
        if self.cfgs['enable_wandb']:
            wandb.log({'val_psnr': self.metric_logger.psnr.global_avg, 'val_ssim': self.metric_logger.ssim.global_avg},
                      step=self.current_iteration)
        return self.metric_logger.psnr.global_avg

    @torch.no_grad()
    def demo(self, video_dir):
        start_time = time()
        for video_name in os.listdir(video_dir):
            # video_name = "Awesome_Again_Stakes_2019.mkv"
            video_path = os.path.join(video_dir, video_name)
            out_path = os.path.join(self.cfgs['output_dir'], 'demo', video_name.split(".")[0])
            inference_demo(self.model, 2, video_path, out_path)
        total_time_str = str(datetime.timedelta(seconds=int(time() - start_time)))
        print("Total time: {}".format(total_time_str))

    def init_training_logger(self):
        """
        Initialize training logger specific for each model
        """
        if misc.is_main_process():
            self.summary_writer = SummaryWriter(log_dir=self.cfgs['summary_dir'], comment='m2mpwc')
            Path(os.path.join(self.cfgs['output_dir'], 'imgs_train')).mkdir(parents=True, exist_ok=True)
            Path(os.path.join(self.cfgs['output_dir'], 'imgs_val')).mkdir(parents=True, exist_ok=True)
        self._reset_metric()

    def init_validation_logger(self):
        """
        Initialize validation logger specific for each model
        """
        if misc.is_main_process():
            self.summary_writer = SummaryWriter(log_dir=self.cfgs['summary_dir'], comment='m2mpwc')
            Path(os.path.join(self.cfgs['output_dir'], 'imgs_val')).mkdir(parents=True, exist_ok=True)
        self._reset_metric()

    def init_testing_logger(self):
        """
        Initialize testing logger specific for each model
        """
        if misc.is_main_process():
            self.summary_writer = SummaryWriter(log_dir=self.cfgs['summary_dir'], comment='m2mpwc')
            Path(os.path.join(self.cfgs['output_dir'], 'imgs_test')).mkdir(parents=True, exist_ok=True)
        self._reset_metric()

    def init_demo_logger(self):
        """
        Initialize testing logger specific for each model
        """
        if misc.is_main_process():
            self.summary_writer = SummaryWriter(log_dir=self.cfgs['summary_dir'], comment='m2mpwc')
            Path(os.path.join(self.cfgs['output_dir'], 'demo')).mkdir(parents=True, exist_ok=True)
        self._reset_metric()

    def finalize_training(self):
        if misc.is_main_process():
            self.summary_writer.close()

    def move_components_to_device(self, mode):
        """
        Move components to device
        """
        self.model.to(self.device)
        for _, v in self.loss_dict.items():
            v.to(self.device)
        self.logger.info('Model: {}'.format(self.model))

    def _reset_metric(self):
        """
        Metric related to average meter
        """
        self.metric_logger = misc.MetricLogger(delimiter="  ")
        self.metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
        self.metric_logger.add_meter('loss', misc.SmoothedValue(window_size=20))

    def count_parameters(self):
        """
        Return the number of parameters for the model
        """
        model_number = sum(p.numel() for p in self.model_without_ddp.parameters() if p.requires_grad)
        return model_number