File size: 12,051 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcf0f2f
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daac507
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
import torch.nn as nn
from .blocks.warp import warp
from .blocks.raft import (
    coords_grid,
    SmallUpdateBlock, BidirCorrBlock, BasicUpdateBlock
)
from .blocks.feat_enc import (
    SmallEncoder,
    BasicEncoder,
    LargeEncoder
)
from .blocks.ifrnet import (
    resize,
    Encoder,
    InitDecoder,
    IntermediateDecoder
)
from .blocks.multi_flow import (
    multi_flow_combine,
    MultiFlowDecoder
)

from ..components import register

from utils.padder import InputPadder


def photometric_consistency(img0, img1, flow01):
    return (img0 - warp(img1, flow01)).abs().sum(dim=1, keepdims=True)


def flow_consistency(flow01, flow10):
    return (flow01 + warp(flow10, flow01)).abs().sum(dim=1, keepdims=True)


gaussian_kernel = torch.tensor([[1, 2, 1],
                                [2, 4, 2],
                                [1, 2, 1]]) / 16
gaussian_kernel = gaussian_kernel.repeat(2, 1, 1, 1)
gaussian_kernel = gaussian_kernel.to("cpu")#torch.cuda.current_device())


def gaussian(x):
    x = torch.nn.functional.pad(x, (1, 1, 1, 1), mode='reflect')
    out = torch.nn.functional.conv2d(x, gaussian_kernel, groups=x.shape[1])
    # out = TF.gaussian_blur(x, [3, 3], sigma=[2, 2])
    return out


def variance_flow(flow):
    flow = flow * torch.tensor(data=[2.0 / (flow.shape[3] - 1.0), 2.0 / (flow.shape[2] - 1.0)], dtype=flow.dtype,
                               device=flow.device).view(1, 2, 1, 1)
    return (gaussian(flow ** 2) - gaussian(flow) ** 2 + 1e-4).sqrt().abs().sum(dim=1, keepdim=True)

@register('amt_splat')
class Model(nn.Module):
    def __init__(self,
                 model_size='S',
                 corr_radius=3,
                 corr_lvls=4,
                 num_flows=3,
                 channels=[20, 32, 44, 56],
                 skip_channels=20,
                 scale_factor=1):
        super(Model, self).__init__()
        self.model_size = model_size
        self.radius = corr_radius
        self.corr_levels = corr_lvls
        self.num_flows = num_flows
        self.channels = channels
        self.skip_channels = skip_channels
        self.scale_factor = scale_factor
        if self.model_size == 'S':
            self.feat_encoder = SmallEncoder(output_dim=84, norm_fn='instance', dropout=0.)
        elif self.model_size == 'L':
            self.feat_encoder = BasicEncoder(output_dim=128, norm_fn='instance', dropout=0.)
        elif self.model_size == 'G':
            self.feat_encoder = LargeEncoder(output_dim=128, norm_fn='instance', dropout=0.)
        self.encoder = Encoder(channels, large=True)

        # self.decoder4 = InitDecoder(channels[3], channels[2], skip_channels)
        self.decoder3 = IntermediateDecoder(channels[2], channels[1], skip_channels)
        self.decoder2 = IntermediateDecoder(channels[1] * 2, channels[0], skip_channels)
        self.decoder1 = MultiFlowDecoder(channels[0] * 2, skip_channels, num_flows)

        self.update4 = self._get_updateblock(channels[2])
        self.update3_low = self._get_updateblock(channels[1] * 2, 2)
        self.update2_low = self._get_updateblock(channels[0] * 2, 4)

        if self.model_size == 'G':
            self.update3_high = self._get_updateblock(channels[1] * 2, None)
            self.update2_high = self._get_updateblock(channels[0] * 2, None)
        # self.alpha = torch.nn.Parameter(torch.ones(1, 1, 1, 1))
        # self.alpha_splat_photo_consistency = torch.nn.Parameter(torch.ones(1, 1, 1, 1))
        # self.alpha_splat_flow_consistency = torch.nn.Parameter(torch.ones(1, 1, 1, 1))
        # self.alpha_splat_variation_flow = torch.nn.Parameter(torch.ones(1, 1, 1, 1))

            # self.comb_block = nn.Sequential(
            #     nn.Conv2d(3 * self.num_flows, 6 * self.num_flows, 7, 1, 3),
            #     nn.PReLU(6 * self.num_flows),
            #     nn.Conv2d(6 * self.num_flows, 3, 7, 1, 3),
            # )

    def _get_updateblock(self, cdim, scale_factor=None):
        return BasicUpdateBlock(cdim=cdim, hidden_dim=192, flow_dim=64,
                                corr_dim=256, corr_dim2=192, fc_dim=188,
                                scale_factor=scale_factor, corr_levels=self.corr_levels,
                                radius=self.radius)

    def _corr_scale_lookup(self, corr_fn, coord, flow_fwd, flow_bwd, embt, downsample=1):
        # convert t -> 0 to 0 -> 1 | convert t -> 1 to 1 -> 0
        # based on linear assumption
        t1_scale = 1. / embt
        t0_scale = 1. / (1. - embt)
        if downsample != 1:
            inv = 1 / downsample
            flow_fwd = inv * resize(flow_fwd, scale_factor=inv)
            flow_bwd = inv * resize(flow_bwd, scale_factor=inv)

        corr_fwd, corr_bwd = corr_fn(coord + flow_fwd, coord + flow_bwd)
        return corr_fwd, corr_bwd, flow_fwd, flow_bwd

    def get_splat_weight(self, img0, img1, flow01, flow10):
        M_splat = 1 / (1 + self.alpha_splat_photo_consistency * photometric_consistency(img0, img1, flow01).detach())  + \
                  1 / (1 + self.alpha_splat_flow_consistency * flow_consistency(flow01, flow10).detach()) + \
                  1 / (1 + self.alpha_splat_variation_flow * variance_flow(flow01).detach())
        return M_splat * self.alpha


    def forward(self, img0, img1, time_step, scale_factor=1.0, eval=False, **kwargs):
        scale_factor = self.scale_factor
        padder = InputPadder(img0.shape, divisor=int(16 / scale_factor))
        img0, img1 = padder.pad(img0, img1)
        mean_ = torch.cat([img0, img1], 2).mean(1, keepdim=True).mean(2, keepdim=True).mean(3, keepdim=True)
        img0 = img0 - mean_
        img1 = img1 - mean_
        img0_ = resize(img0, scale_factor) if scale_factor != 1.0 else img0
        img1_ = resize(img1, scale_factor) if scale_factor != 1.0 else img1
        b, _, h, w = img0_.shape
        coords = coords_grid(b, h // 8, w // 8, img0.device)
        flow_fwd_4, flow_bwd_4 = torch.zeros(b, 2, h // 8, w // 8), torch.zeros(b, 2, h // 8, w // 8)#.cuda()#.cuda(), torch.zeros(b, 2, h // 8, w // 8)#.cuda()

        fmap0, fmap1 = self.feat_encoder([img0_, img1_])  # [1, 128, H//8, W//8]
        corr_fn = BidirCorrBlock(fmap0, fmap1, radius=self.radius, num_levels=self.corr_levels)

        # f0_1: [1, c0, H//2, W//2] | f0_2: [1, c1, H//4, W//4]
        # f0_3: [1, c2, H//8, W//8] | f0_4: [1, c3, H//16, W//16]
        f0_1, f0_2, f0_3 = self.encoder(img0_)
        f1_1, f1_2, f1_3 = self.encoder(img1_)

        ######################################### the 4th decoder #########################################
        corr_fwd_4, corr_bwd_4, _, _ = self._corr_scale_lookup(corr_fn, coords, flow_fwd_4, flow_bwd_4, time_step)

        # residue update with lookup corr
        delta_f0_3_, delta_flow_fwd_4 = self.update4(f0_3, flow_fwd_4, corr_fwd_4)
        delta_f1_3_, delta_flow_bwd_4 = self.update4(f0_3, flow_bwd_4, corr_bwd_4)
        up_f0_3 = f0_3 + delta_f0_3_
        up_f1_3 = f1_3 + delta_f1_3_
        flow_fwd_4 = flow_fwd_4 + delta_flow_fwd_4
        flow_bwd_4 = flow_bwd_4 + delta_flow_bwd_4

        ######################################### the 3rd decoder #########################################
        flow_fwd_3, flow_bwd_3, f0_2_, f1_2_ = self.decoder3(up_f0_3, up_f1_3, flow_fwd_4, flow_bwd_4)
        corr_fwd_3, corr_bwd_3, flow_fwd_3_, flow_bwd_3_ = self._corr_scale_lookup(corr_fn,
                                                         coords, flow_fwd_3, flow_bwd_3,
                                                         time_step, downsample=2)

        # residue update with lookup corr
        f0_2 = torch.cat([f0_2, f0_2_], dim=1)
        f1_2 = torch.cat([f1_2, f1_2_], dim=1)
        delta_f0_2_, delta_flow_fwd_3 = self.update3_low(f0_2, flow_fwd_3_, corr_fwd_3)
        delta_f1_2_, delta_flow_bwd_3 = self.update3_low(f1_2, flow_bwd_3_, corr_bwd_3)
        f0_2 = f0_2 + delta_f0_2_
        f1_2 = f1_2 + delta_f1_2_
        flow_fwd_3 = flow_fwd_3 + delta_flow_fwd_3
        flow_bwd_3 = flow_bwd_3 + delta_flow_bwd_3

        if self.model_size == 'G':
            # residue update with lookup corr (hr)
            corr_fwd_3 = resize(corr_fwd_3, scale_factor=2.0)
            corr_bwd_3 = resize(corr_bwd_3, scale_factor=2.0)
            delta_f0_2_, delta_flow_fwd_3 = self.update3_high(f0_2, flow_fwd_3, corr_fwd_3)
            delta_f1_2_, delta_flow_bwd_3 = self.update3_high(f1_2, flow_bwd_3, corr_bwd_3)
            up_f0_2 = f0_2 + delta_f0_2_
            up_f1_2 = f1_2 + delta_f1_2_
            flow_fwd_3 = flow_fwd_3 + delta_flow_fwd_3
            flow_bwd_3 = flow_bwd_3 + delta_flow_bwd_3

        ######################################### the 2nd decoder #########################################
        flow_fwd_2, flow_bwd_2, f0_1_, f1_1_ = self.decoder2(up_f0_2, up_f1_2, flow_fwd_3, flow_bwd_3)
        corr_fwd_2, corr_bwd_2, flow_fwd_2_, flow_bwd_2_ = self._corr_scale_lookup(corr_fn,
                                                         coords, flow_fwd_2, flow_bwd_2,
                                                         time_step, downsample=4)

        # residue update with lookup corr
        f0_1 = torch.cat([f0_1, f0_1_], dim=1)
        f1_1 = torch.cat([f1_1, f1_1_], dim=1)
        delta_f0_1_, delta_flow_fwd_2 = self.update2_low(f0_1, flow_fwd_2_, corr_fwd_2)
        delta_f1_1_, delta_flow_bwd_2 = self.update2_low(f1_1, flow_bwd_2_, corr_bwd_2)
        f0_1 = f0_1 + delta_f0_1_
        f1_1 = f1_1 + delta_f1_1_
        flow_fwd_2 = flow_fwd_2 + delta_flow_fwd_2
        flow_bwd_2 = flow_bwd_2 + delta_flow_bwd_2
        if self.model_size == 'G':
            # residue update with lookup corr (hr)
            corr_fwd_2 = resize(corr_fwd_2, scale_factor=4.0)
            corr_bwd_2 = resize(corr_bwd_2, scale_factor=4.0)
            delta_f0_1_, delta_flow_fwd_2 = self.update2_high(f0_1, flow_fwd_2, corr_fwd_2)
            delta_f1_1_, delta_flow_bwd_2 = self.update2_high(f1_1, flow_bwd_2, corr_bwd_2)
            f0_1 = f0_1 + delta_f0_1_
            f1_1 = f1_1 + delta_f1_1_
            flow_fwd_2 = flow_fwd_2 + delta_flow_fwd_2
            flow_bwd_2 = flow_bwd_2 + delta_flow_bwd_2

        ######################################### the 1st decoder #########################################
        flow_fwd_1, flow_bwd_1, mask_fwd, mask_bwd = self.decoder1(f0_1, f1_1, flow_fwd_2, flow_bwd_2)

        if scale_factor != 1.0:
            flow_fwd_1 = resize(flow_fwd_1, scale_factor=(1.0 / scale_factor)) * (1.0 / scale_factor)
            flow_bwd_1 = resize(flow_bwd_1, scale_factor=(1.0 / scale_factor)) * (1.0 / scale_factor)
            mask_fwd = resize(mask_fwd, scale_factor=(1.0 / scale_factor))
            mask_bwd = resize(mask_bwd, scale_factor=(1.0 / scale_factor))

        # Merge multiple predictions
        # img0_ = img0.repeat(1, self.num_flows, 1, 1).view(b * self.num_flows, h, w)
        # img1_ = img1.repeat(1, self.num_flows, 1, 1).view(b * self.num_flows, h, w)
        # metric0 = self.get_splat_weight(img0_, img1_, flow_fwd_1_, flow_bwd_1_)
        # metric1 = self.get_splat_weight(img1_, img0_, flow_bwd_1_, flow_fwd_1_)
        imgt_pred = multi_flow_combine(img0, img1, flow_fwd_1, flow_bwd_1,
                                       mask_fwd, mask_bwd, time_step, mean_)
        imgt_pred = torch.clamp(imgt_pred, 0, 1)
        imgt_pred = padder.unpad(imgt_pred)

        if eval:
            return {'imgt_pred': imgt_pred, }
        else:
            flow_fwd_1 = flow_fwd_1.reshape(b, self.num_flows, 2, int(h / scale_factor), int(w / scale_factor))
            flow_bwd_1 = flow_bwd_1.reshape(b, self.num_flows, 2, int(h / scale_factor), int(w / scale_factor))
            return {
                'imgt_pred': imgt_pred,
                'flow0_pred': [flow_fwd_1 * 0.5, flow_fwd_2 * 0.5, flow_fwd_3 * 0.5, flow_fwd_4 * 0.5],
                'flow1_pred': [flow_bwd_1 * 0.5, flow_bwd_2 * 0.5, flow_bwd_3 * 0.5, flow_bwd_4 * 0.5],
                'flowfwd': flow_fwd_1[:, 0] * 0.5,
                'flowbwd': flow_bwd_1[:, 0] * 0.5
            }