File size: 1,595 Bytes
8d015d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np

import torch

from skimage.metrics import peak_signal_noise_ratio, structural_similarity


def calculate_batch_psnr(gt_tensor, output_tensor, mode='avg'):
    # both parameters are in the form of tensor of size: BS, C, H, W

    if mode == 'avg':
        gt_np = gt_tensor.cpu().numpy().astype(np.float32)
        output_np = output_tensor.cpu().numpy().astype(np.float32)

        bs = gt_np.shape[0]
        psnr_list = []
        psnr = 0
        for i in range(bs):
            gt_im = gt_np[i, :, :, :]
            output_im = output_np[i, :, :, :]

            gt_im = gt_im.transpose((1, 2, 0))
            output_im = output_im.transpose((1, 2, 0))

            psnr_list.append(peak_signal_noise_ratio(gt_im, output_im, data_range=1.))
            psnr += peak_signal_noise_ratio(gt_im, output_im, data_range=1.)
        return float(psnr / bs), psnr_list
    else:
        raise NotImplementedError


def calculate_batch_ssim(gt_tensor, output_tensor, mode='avg'):
    if mode == 'avg':
        gt_np = gt_tensor.cpu().numpy().astype(np.float32)
        output_np = output_tensor.cpu().numpy().astype(np.float32)

        bs = gt_np.shape[0]
        ssim = 0
        for i in range(bs):
            gt_im = gt_np[i, :, :, :]
            output_im = output_np[i, :, :, :]
            gt_im = gt_im.transpose((1, 2, 0))
            output_im = output_im.transpose((1, 2, 0))

            ssim += structural_similarity(gt_im, output_im, data_range=1., multichannel=True, channel_axis=2)

        return float(ssim / bs), bs
    else:
        raise NotImplementedError