File size: 9,852 Bytes
5f261e2 f5b944f 5f261e2 f5b944f bc66734 5f261e2 bc66734 5f261e2 bc66734 5f261e2 bc66734 5f261e2 db478b8 5f261e2 db478b8 5f261e2 27271f0 5f261e2 a7b77e7 5f261e2 a7b77e7 f5b944f a7b77e7 5f261e2 a7b77e7 c71a8cd a7b77e7 9df19db 5f261e2 9df19db a7b77e7 5f261e2 1b13842 5f261e2 a7b77e7 9df19db a7b77e7 bc66734 c71b279 c0fdbab c71b279 5f261e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import gradio as gr
import logging
import os
import numpy as np
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import RecursiveCharacterTextSplitter
import faiss
from simple_salesforce import Salesforce
from dotenv import load_dotenv
import zipfile
from pathlib import Path
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load environment variables from .env file
load_dotenv() # Load the .env file
# Get the Salesforce credentials from environment variables
sf_username = os.getenv("SF_USERNAME")
sf_password = os.getenv("SF_PASSWORD")
sf_security_token = os.getenv("SF_SECURITY_TOKEN")
sf_instance_url = os.getenv("SF_INSTANCE_URL")
# Check if the environment variables are correctly set
if not sf_username or not sf_password or not sf_security_token or not sf_instance_url:
logger.error("β Salesforce credentials are missing from environment variables!")
raise ValueError("Salesforce credentials are not properly set.")
# Salesforce connection
try:
sf = Salesforce(
username=sf_username,
password=sf_password,
security_token=sf_security_token,
instance_url=sf_instance_url
)
logger.info("β
Connected to Salesforce")
except Exception as e:
logger.error(f"β Salesforce connection failed: {str(e)}")
raise
# --- Extract zip files and read documents ---
def extract_zip(zip_path, extract_to):
try:
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
logger.info(f"Extracted {zip_path} to {extract_to}")
except Exception as e:
logger.error(f"Failed to extract {zip_path}: {str(e)}")
raise
def load_documents(folder_path):
documents = []
sources = []
for file in Path(folder_path).rglob("*.txt"):
text = file.read_text(encoding="utf-8", errors="ignore")
documents.append(text)
sources.append(file.name)
return documents, sources
# --- Chunking ---
text_splitter = RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=50)
# --- Load model ---
model = SentenceTransformer("all-MiniLM-L6-v2")
# --- Preprocessing ---
data_dir = Path("./data")
data_dir.mkdir(exist_ok=True)
doc_folders = [
("Company_Policies.zip", "Company_Policies"),
("HR_Policies.zip", "Hr_Policies"),
("Contract_Clauses.zip", "Contract_Clauses")
]
all_chunks = []
metadata = []
for zip_name, folder in doc_folders:
zip_path = Path(zip_name)
if not zip_path.exists():
logger.error(f"Zip file {zip_name} not found")
raise FileNotFoundError(f"Zip file {zip_name} not found")
extract_path = data_dir / folder
extract_path.mkdir(exist_ok=True)
extract_zip(zip_path, extract_path)
docs, sources = load_documents(extract_path)
if not docs:
logger.error(f"No documents found in {extract_path}")
raise ValueError(f"No documents found in {extract_path}")
for doc, src in zip(docs, sources):
chunks = text_splitter.split_text(doc)
all_chunks.extend(chunks)
src_url = f"https://company.com/{folder}/{src}"
metadata.extend([src_url] * len(chunks))
# --- Embeddings + FAISS index ---
embeddings = model.encode(all_chunks)
index = faiss.IndexFlatL2(embeddings.shape[1])
index.add(np.array(embeddings))
logger.info("FAISS index built successfully")
# --- Create Record in Salesforce ---
def create_salesforce_record(query, answer, confidence_percentage, source_link):
try:
# Convert the confidence_percentage to Python float (to avoid numpy float32)
confidence_percentage = float(confidence_percentage)
# Data with correctly mapped field names
data = {
"Query__c": query, # Field for User Query
"Answer__c": answer, # Field for Answer
"Confidence_Percentage__c": confidence_percentage, # Field for Confidence Score
"Document_link__c": source_link, # Field for Document Link
}
# Creating the record in Salesforce
response = sf.chat_query_log__c.create(data)
# Check if record was created successfully
if 'id' in response: # If the response contains an 'id', the record is created successfully
record_id = response['id']
logger.info(f"β
Record created successfully in Salesforce with ID: {record_id}")
return record_id # Return the Salesforce record ID
else:
# Log the failure response
logger.error(f"β Failed to create Salesforce record. Response: {response}")
return None
except Exception as e:
# Log any error during record creation
logger.error(f"Error creating Salesforce record: {str(e)}")
return None
# --- Search & Answer ---
def answer_query(query):
try:
logger.info(f"Processing query: {query}")
query_embedding = model.encode([query])
D, I = index.search(np.array(query_embedding), k=3)
top_chunks = [all_chunks[i] for i in I[0]]
top_sources = [metadata[i] for i in I[0]]
distances = D[0]
relevant_chunks = [
chunk for chunk, dist in zip(top_chunks, distances) if dist < 0.8
]
relevant_sources = [
src for src, dist in zip(top_sources, distances) if dist < 0.8
]
if not relevant_chunks:
return "No relevant information found.", "Confidence: 0%", "Source Link: None"
answer = relevant_chunks[0].strip()
min_distance = min(distances)
confidence_percentage = max(0, 100 - (min_distance * 100))
source_link = relevant_sources[0] if relevant_sources else "None"
# Create Salesforce record for the query response
record_id = create_salesforce_record(query, answer, confidence_percentage, source_link)
if record_id:
return (
answer,
f"Confidence: {confidence_percentage:.2f}%",
f"Source Link: {source_link}",
f"Salesforce Record ID: {record_id}" # Display the Salesforce record ID
)
else:
return (
answer,
f"Confidence: {confidence_percentage:.2f}%",
f"Source Link: {source_link}",
"Failed to create record in Salesforce"
)
except Exception as e:
logger.error(f"Error in answer_query: {str(e)}")
return f"Error: {str(e)}", "", "", ""
# --- Gradio Chatbot UI Design ---
def process_question(q, chat_history):
if not q.strip():
return chat_history + [("User", "Please enter a question.")], "", ""
answer, confidence, source, record_id = answer_query(q)
chat_history.append(("User", q))
chat_history.append(("Bot", answer))
return chat_history, confidence, source, record_id
# --- Chatbot UI with dynamic styling using elem_id ---
with gr.Blocks(title="Company Documents Q&A Chatbot", theme=gr.themes.Soft()) as demo:
gr.Markdown("## π **Company Policies Q&A Chatbot**")
with gr.Row():
with gr.Column(scale=3):
question = gr.Textbox(
label="Ask a Question",
placeholder="What are the conditions for permanent employment status?",
lines=1,
interactive=True,
elem_id="user-question",
)
with gr.Column(scale=1):
submit_btn = gr.Button("Submit", variant="primary", elem_id="submit-btn", scale=2) # Using scale for full-width
with gr.Row():
with gr.Column():
chat_history = gr.Chatbot(
label="Chat History",
elem_id="chatbox",
height=400, # Set a fixed height
show_label=False # Hide the label to make the chat more clean
)
conf_out = gr.Markdown(label="Confidence", elem_id="confidence")
source_out = gr.Markdown(label="Source Link", elem_id="source-link")
record_out = gr.Markdown(label="Salesforce Record ID", elem_id="salesforce-id")
submit_btn.click(fn=process_question, inputs=[question, chat_history], outputs=[chat_history, conf_out, source_out, record_out])
# --- CSS for VFX Styles ---
demo.css = """
/* Chatbot Container */
#chatbox {
background-color: #f9f9f9;
border-radius: 12px;
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
padding: 15px;
overflow-y: auto;
}
/* User and Bot message bubbles */
.gradio-chatbot-message-user {
background-color: #0d6efd;
color: white;
border-radius: 15px;
padding: 10px;
margin: 5px 0;
animation: fadeIn 0.5s ease-in-out;
}
.gradio-chatbot-message-bot {
background-color: #f1f1f1;
color: #333;
border-radius: 15px;
padding: 10px;
margin: 5px 0;
animation: fadeIn 0.5s ease-in-out;
}
/* Input Box */
#user-question {
background-color: #e9ecef;
border-radius: 8px;
padding: 10px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
transition: background-color 0.3s ease;
}
#user-question:hover {
background-color: #f1f1f1;
}
/* Submit Button */
#submit-btn {
background-color: #007bff;
color: white;
border-radius: 8px;
transition: transform 0.2s ease-in-out;
margin-top: 15px;
}
#submit-btn:hover {
transform: scale(1.1);
}
/* Animation for message appearance */
@keyframes fadeIn {
0% { opacity: 0; transform: translateY(20px); }
100% { opacity: 1; transform: translateY(0); }
}
"""
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
|