Spaces:
Sleeping
Sleeping
File size: 1,614 Bytes
aa5b7bd 4013e19 aa5b7bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
import gradio as gr
import tensorflow as tf
from tensorflow.keras.applications.inception_resnet_v2 import preprocess_input
from tensorflow.keras.preprocessing import image
import numpy as np
from PIL import Image
model = tf.keras.models.load_model('best_model_InceptionV3.h5')
# Function for prediction
def predict(img):
try:
img_resized = img.resize((224, 224)) # Resize image to the target size
img_array = image.img_to_array(img_resized) # Convert image to array
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
img_array = preprocess_input(img_array) # Preprocess image according to model requirements
predictions = model.predict(img_array)
class_idx = np.argmax(predictions, axis=1)[0]
class_labels = ['Benign', 'Malignant'] # Update according to your class labels
class_label = class_labels[class_idx]
confidence = float(predictions[0][class_idx])
return f"Class: {class_label}, Confidence: {confidence:.2f}"
except Exception as e:
return f"Error in prediction: {e}"
# Define the Gradio app
with gr.Blocks() as demo:
gr.Markdown("Image Classification with InceptionV2")
with gr.Row():
with gr.Column():
classify_input = gr.Image(type="pil", label="Upload an Image")
classify_button = gr.Button("Classify!")
with gr.Column():
classify_output = gr.Textbox(label="Classification Result")
classify_button.click(
predict,
inputs=[classify_input],
outputs=[classify_output]
)
demo.launch()
|