Spaces:
Configuration error
Configuration error
File size: 15,031 Bytes
8e729e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import random
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from models.video_model import VideoModel
from util.atlas_utils import (
load_neural_atlases_models,
get_frames_data,
get_high_res_atlas,
get_atlas_crops,
reconstruct_video_layer,
create_uv_mask,
get_masks_boundaries,
get_random_crop_params,
get_atlas_bounding_box,
)
from util.util import load_video
class AtlasDataset(Dataset):
def __init__(self, config):
self.config = config
self.device = config["device"]
self.min_size = min(self.config["resx"], self.config["resy"])
self.max_size = max(self.config["resx"], self.config["resy"])
data_folder = f"data/videos/{self.config['checkpoint_path'].split('/')[2]}"
self.original_video = load_video(
data_folder,
resize=(self.config["resy"], self.config["resx"]),
num_frames=self.config["maximum_number_of_frames"],
).to(self.device)
(
foreground_mapping,
background_mapping,
foreground_atlas_model,
background_atlas_model,
alpha_model,
) = load_neural_atlases_models(config)
(
original_background_all_uvs,
original_foreground_all_uvs,
self.all_alpha,
foreground_atlas_alpha,
) = get_frames_data(
config,
foreground_mapping,
background_mapping,
alpha_model,
)
self.background_reconstruction = reconstruct_video_layer(original_background_all_uvs, background_atlas_model)
# using original video for the foreground layer
self.foreground_reconstruction = self.original_video * self.all_alpha
(
self.background_all_uvs,
self.scaled_background_uvs,
self.background_min_u,
self.background_min_v,
self.background_max_u,
self.background_max_v,
) = self.preprocess_uv_values(
original_background_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="background"
)
(
self.foreground_all_uvs,
self.scaled_foreground_uvs,
self.foreground_min_u,
self.foreground_min_v,
self.foreground_max_u,
self.foreground_max_v,
) = self.preprocess_uv_values(
original_foreground_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="foreground"
)
self.background_uv_mask = create_uv_mask(
config,
background_mapping,
self.background_min_u,
self.background_min_v,
self.background_max_u,
self.background_max_v,
uv_shift=-0.5,
resolution_shift=1,
)
self.foreground_uv_mask = create_uv_mask(
config,
foreground_mapping,
self.foreground_min_u,
self.foreground_min_v,
self.foreground_max_u,
self.foreground_max_v,
uv_shift=0.5,
resolution_shift=0,
)
self.background_grid_atlas = get_high_res_atlas(
background_atlas_model,
self.background_min_v,
self.background_min_u,
self.background_max_v,
self.background_max_u,
config["grid_atlas_resolution"],
device=config["device"],
layer="background",
)
self.foreground_grid_atlas = get_high_res_atlas(
foreground_atlas_model,
self.foreground_min_v,
self.foreground_min_u,
self.foreground_max_v,
self.foreground_max_u,
config["grid_atlas_resolution"],
device=config["device"],
layer="foreground",
)
if config["return_atlas_alpha"]:
self.foreground_atlas_alpha = foreground_atlas_alpha # used for visualizations
self.cnn_min_crop_size = 2 ** self.config["num_scales"] + 1
if self.config["finetune_foreground"]:
self.mask_boundaries = get_masks_boundaries(
alpha_video=self.all_alpha.cpu(),
border=self.config["masks_border_expansion"],
threshold=self.config["mask_alpha_threshold"],
min_crop_size=self.cnn_min_crop_size,
)
self.cropped_foreground_atlas, self.foreground_atlas_bbox = get_atlas_bounding_box(
self.mask_boundaries, self.foreground_grid_atlas, self.foreground_all_uvs
)
self.step = -1
crop_transforms = transforms.Compose(
[
transforms.RandomApply(
[transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1)],
p=0.1,
),
]
)
self.crop_aug = crop_transforms
self.dist = self.config["center_frame_distance"]
@staticmethod
def preprocess_uv_values(layer_uv_values, resolution, device="cuda", layer="background"):
if layer == "background":
shift = 1
else:
shift = 0
uv_values = (layer_uv_values + shift) * resolution
min_u, min_v = uv_values.reshape(-1, 2).min(dim=0).values.long()
uv_values -= torch.tensor([min_u, min_v], device=device)
max_u, max_v = uv_values.reshape(-1, 2).max(dim=0).values.ceil().long()
edge_size = torch.tensor([max_u, max_v], device=device)
scaled_uv_values = ((uv_values.reshape(-1, 2) / edge_size) * 2 - 1).unsqueeze(1).unsqueeze(0)
return uv_values, scaled_uv_values, min_u, min_v, max_u, max_v
def get_random_crop_data(self, crop_size):
t = random.randint(0, self.config["maximum_number_of_frames"] - 1)
y_start, x_start, h_crop, w_crop = get_random_crop_params((self.config["resx"], self.config["resy"]), crop_size)
return y_start, x_start, h_crop, w_crop, t
def get_global_crops_multi(self):
foreground_atlas_crops = []
background_atlas_crops = []
foreground_uvs = []
background_uvs = []
background_alpha_crops = []
foreground_alpha_crops = []
original_background_crops = []
original_foreground_crops = []
output_dict = {}
t = random.randint(self.dist, self.config["maximum_number_of_frames"] - 1 - self.dist)
flip = torch.rand(1) < self.config["flip_p"]
if self.config["finetune_foreground"]:
for cur_frame in [t - self.dist, t, t + self.dist]:
y_start, x_start, frame_h, frame_w = self.mask_boundaries[cur_frame].tolist()
crop_size = (
max(
random.randint(round(self.config["crops_min_cover"] * frame_h), frame_h),
self.cnn_min_crop_size,
),
max(
random.randint(round(self.config["crops_min_cover"] * frame_w), frame_w),
self.cnn_min_crop_size,
),
)
y_crop, x_crop, h_crop, w_crop = get_random_crop_params((frame_w, frame_h), crop_size)
foreground_uv = self.foreground_all_uvs[
cur_frame,
y_start + y_crop : y_start + y_crop + h_crop,
x_start + x_crop : x_start + x_crop + w_crop,
]
alpha = self.all_alpha[
[cur_frame],
:,
y_start + y_crop : y_start + y_crop + h_crop,
x_start + x_crop : x_start + x_crop + w_crop,
]
original_foreground_crop = self.foreground_reconstruction[
[cur_frame],
:,
y_start + y_crop : y_start + y_crop + h_crop,
x_start + x_crop : x_start + x_crop + w_crop,
]
original_foreground_crop = self.crop_aug(original_foreground_crop)
foreground_alpha_crops.append(alpha.flip(-1) if flip else alpha)
foreground_uvs.append(foreground_uv) # not scaled
original_foreground_crops.append(
original_foreground_crop.flip(-1) if flip else original_foreground_crop
)
foreground_min_vals = torch.tensor(
[self.config["grid_atlas_resolution"]] * 2, device=self.device, dtype=torch.long
)
foreground_max_vals = torch.tensor([0] * 2, device=self.device, dtype=torch.long)
for uv_values in foreground_uvs:
min_uv = uv_values.amin(dim=[0, 1]).long()
max_uv = uv_values.amax(dim=[0, 1]).ceil().long()
foreground_min_vals = torch.minimum(foreground_min_vals, min_uv)
foreground_max_vals = torch.maximum(foreground_max_vals, max_uv)
h_v = foreground_max_vals[1] - foreground_min_vals[1]
w_u = foreground_max_vals[0] - foreground_min_vals[0]
foreground_atlas_crop = crop(
self.foreground_grid_atlas,
foreground_min_vals[1],
foreground_min_vals[0],
h_v,
w_u,
)
foreground_atlas_crop = self.crop_aug(foreground_atlas_crop)
for i, uv_values in enumerate(foreground_uvs):
foreground_uvs[i] = (
2 * (uv_values - foreground_min_vals) / (foreground_max_vals - foreground_min_vals) - 1
).unsqueeze(0)
if flip:
foreground_uvs[i][:, :, :, 0] = -foreground_uvs[i][:, :, :, 0]
foreground_uvs[i] = foreground_uvs[i].flip(-2)
foreground_atlas_crops.append(foreground_atlas_crop.flip(-1) if flip else foreground_atlas_crop)
elif self.config["finetune_background"]:
crop_size = (
random.randint(round(self.config["crops_min_cover"] * self.min_size), self.min_size),
random.randint(round(self.config["crops_min_cover"] * self.max_size), self.max_size),
)
crop_data = self.get_random_crop_data(crop_size)
y, x, h, w, _ = crop_data
background_uv = self.background_all_uvs[[t - self.dist, t, t + self.dist], y : y + h, x : x + w]
original_background_crop = self.background_reconstruction[
[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w
]
alpha = self.all_alpha[[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w]
original_background_crop = self.crop_aug(original_background_crop)
original_background_crops = [
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in original_background_crop
]
background_alpha_crops = [el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in alpha]
background_atlas_crop, background_min_vals, background_max_vals = get_atlas_crops(
background_uv,
self.background_grid_atlas,
self.crop_aug,
)
background_uv = 2 * (background_uv - background_min_vals) / (background_max_vals - background_min_vals) - 1
if flip:
background_uv[:, :, :, 0] = -background_uv[:, :, :, 0]
background_uv = background_uv.flip(-2)
background_atlas_crops = [
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in background_atlas_crop
]
background_uvs = [el.unsqueeze(0) for el in background_uv]
if self.config["finetune_foreground"]:
output_dict["foreground_alpha"] = foreground_alpha_crops
output_dict["foreground_uvs"] = foreground_uvs
output_dict["original_foreground_crops"] = original_foreground_crops
output_dict["foreground_atlas_crops"] = foreground_atlas_crops
elif self.config["finetune_background"]:
output_dict["background_alpha"] = background_alpha_crops
output_dict["background_uvs"] = background_uvs
output_dict["original_background_crops"] = original_background_crops
output_dict["background_atlas_crops"] = background_atlas_crops
return output_dict
@torch.no_grad()
def render_video_from_atlas(self, model, layer="background", foreground_padding_mode="replicate"):
if layer == "background":
grid_atlas = self.background_grid_atlas
all_uvs = self.scaled_background_uvs
uv_mask = self.background_uv_mask
else:
grid_atlas = self.cropped_foreground_atlas
full_grid_atlas = self.foreground_grid_atlas
all_uvs = self.scaled_foreground_uvs
uv_mask = crop(self.foreground_uv_mask, *self.foreground_atlas_bbox)
atlas_edit_only = model.netG(grid_atlas)
edited_atlas_dict = model.render(atlas_edit_only, bg_image=grid_atlas)
if layer == "foreground":
atlas_edit_only = torch.nn.functional.pad(
atlas_edit_only,
pad=(
self.foreground_atlas_bbox[1],
full_grid_atlas.shape[-1] - (self.foreground_atlas_bbox[1] + self.foreground_atlas_bbox[3]),
self.foreground_atlas_bbox[0],
full_grid_atlas.shape[-2] - (self.foreground_atlas_bbox[0] + self.foreground_atlas_bbox[2]),
),
mode=foreground_padding_mode,
)
edit = F.grid_sample(
atlas_edit_only, all_uvs, mode="bilinear", align_corners=self.config["align_corners"]
).clamp(min=0.0, max=1.0)
edit = edit.squeeze().t() # shape (batch, 3)
edit = (
edit.reshape(self.config["maximum_number_of_frames"], self.config["resy"], self.config["resx"], 4)
.permute(0, 3, 1, 2)
.clamp(min=0.0, max=1.0)
)
edit_dict = model.render(edit, bg_image=self.original_video)
return edited_atlas_dict, edit_dict, uv_mask
def get_whole_atlas(self):
if self.config["finetune_foreground"]:
atlas = self.cropped_foreground_atlas
else:
atlas = self.background_grid_atlas
atlas = VideoModel.resize_crops(atlas, 3)
return atlas
def __getitem__(self, index):
self.step += 1
sample = {"step": self.step}
sample["global_crops"] = self.get_global_crops_multi()
if self.config["input_entire_atlas"] and ((self.step + 1) % self.config["entire_atlas_every"] == 0):
sample["input_image"] = self.get_whole_atlas()
return sample
def __len__(self):
return 1
|