File size: 12,034 Bytes
16d007c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import scipy.interpolate
import torch
from torchvision.transforms.functional import crop
from tqdm import tqdm

from models.implicit_neural_networks import IMLP


def load_neural_atlases_models(config):
    foreground_mapping = IMLP(
        input_dim=3,
        output_dim=2,
        hidden_dim=256,
        use_positional=False,
        num_layers=6,
        skip_layers=[],
    ).to(config["device"])

    background_mapping = IMLP(
        input_dim=3,
        output_dim=2,
        hidden_dim=256,
        use_positional=False,
        num_layers=4,
        skip_layers=[],
    ).to(config["device"])

    foreground_atlas_model = IMLP(
        input_dim=2,
        output_dim=3,
        hidden_dim=256,
        use_positional=True,
        positional_dim=10,
        num_layers=8,
        skip_layers=[4, 7],
    ).to(config["device"])

    background_atlas_model = IMLP(
        input_dim=2,
        output_dim=3,
        hidden_dim=256,
        use_positional=True,
        positional_dim=10,
        num_layers=8,
        skip_layers=[4, 7],
    ).to(config["device"])

    alpha_model = IMLP(
        input_dim=3,
        output_dim=1,
        hidden_dim=256,
        use_positional=True,
        positional_dim=5,
        num_layers=8,
        skip_layers=[],
    ).to(config["device"])

    checkpoint = torch.load(config["checkpoint_path"])
    foreground_mapping.load_state_dict(checkpoint["model_F_mapping1_state_dict"])
    background_mapping.load_state_dict(checkpoint["model_F_mapping2_state_dict"])
    foreground_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
    background_atlas_model.load_state_dict(checkpoint["F_atlas_state_dict"])
    alpha_model.load_state_dict(checkpoint["model_F_alpha_state_dict"])

    foreground_mapping = foreground_mapping.eval().requires_grad_(False)
    background_mapping = background_mapping.eval().requires_grad_(False)
    foreground_atlas_model = foreground_atlas_model.eval().requires_grad_(False)
    background_atlas_model = background_atlas_model.eval().requires_grad_(False)
    alpha_model = alpha_model.eval().requires_grad_(False)

    return foreground_mapping, background_mapping, foreground_atlas_model, background_atlas_model, alpha_model


@torch.no_grad()
def get_frames_data(config, foreground_mapping, background_mapping, alpha_model):
    max_size = max(config["resx"], config["resy"])
    normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
    background_uv_values = torch.zeros(
        size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
    )
    foreground_uv_values = torch.zeros(
        size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 2), device=config["device"]
    )
    alpha = torch.zeros(
        size=(config["maximum_number_of_frames"], config["resy"], config["resx"], 1), device=config["device"]
    )

    for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
        indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))

        normalized_chunk = (indices / normalizing_factor - 1).to(config["device"])

        # get the atlas UV coordinates from the two mapping networks;
        with torch.no_grad():
            current_background_uv_values = background_mapping(normalized_chunk)
            current_foreground_uv_values = foreground_mapping(normalized_chunk)
            current_alpha = alpha_model(normalized_chunk)

        background_uv_values[frame, indices[:, 1], indices[:, 0]] = current_background_uv_values * 0.5 - 0.5
        foreground_uv_values[frame, indices[:, 1], indices[:, 0]] = current_foreground_uv_values * 0.5 + 0.5
        current_alpha = 0.5 * (current_alpha + 1.0)
        current_alpha = 0.99 * current_alpha + 0.001
        alpha[frame, indices[:, 1], indices[:, 0]] = current_alpha

    if config["return_atlas_alpha"]:  # this should take a few minutes
        foreground_atlas_alpha = torch.zeros(
            size=(
                config["maximum_number_of_frames"],
                config["grid_atlas_resolution"],
                config["grid_atlas_resolution"],
                1,
            ),
        )
        foreground_uv_values_grid = foreground_uv_values * config["grid_atlas_resolution"]
        indices = get_grid_indices(0, 0, config["grid_atlas_resolution"], config["grid_atlas_resolution"])
        for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
            interpolated = scipy.interpolate.griddata(
                foreground_uv_values_grid[frame].reshape(-1, 2).cpu().numpy(),
                alpha[frame]
                .reshape(
                    -1,
                )
                .cpu()
                .numpy(),
                indices.reshape(-1, 2).cpu().numpy(),
                method="linear",
            ).reshape(config["grid_atlas_resolution"], config["grid_atlas_resolution"], 1)
            foreground_atlas_alpha[frame] = torch.from_numpy(interpolated)
        foreground_atlas_alpha[foreground_atlas_alpha.isnan()] = 0.0
        foreground_atlas_alpha = (
            torch.median(foreground_atlas_alpha, dim=0, keepdim=True).values.to(config["device"]).permute(0, 3, 2, 1)
        )
    else:
        foreground_atlas_alpha = None
    return background_uv_values, foreground_uv_values, alpha.permute(0, 3, 1, 2), foreground_atlas_alpha


@torch.no_grad()
def reconstruct_video_layer(uv_values, atlas_model):
    t, h, w, _ = uv_values.shape
    reconstruction = torch.zeros(size=(t, h, w, 3), device=uv_values.device)
    for frame in range(t):
        rgb = (atlas_model(uv_values[frame].reshape(-1, 2)) + 1) * 0.5
        reconstruction[frame] = rgb.reshape(h, w, 3)
    return reconstruction.permute(0, 3, 1, 2)


@torch.no_grad()
def create_uv_mask(config, mapping_model, min_u, min_v, max_u, max_v, uv_shift=-0.5, resolution_shift=1):
    max_size = max(config["resx"], config["resy"])
    normalizing_factor = torch.tensor([max_size / 2, max_size / 2, config["maximum_number_of_frames"] / 2])
    resolution = config["grid_atlas_resolution"]
    uv_mask = torch.zeros(size=(resolution, resolution), device=config["device"])

    for frame in tqdm(range(config["maximum_number_of_frames"]), leave=False):
        indices = get_grid_indices(0, 0, config["resy"], config["resx"], t=torch.tensor(frame))
        for chunk in indices.split(50000, dim=0):
            normalized_chunk = (chunk / normalizing_factor - 1).to(config["device"])

            # get the atlas UV coordinates from the two mapping networks;
            with torch.no_grad():
                uv_values = mapping_model(normalized_chunk)
            uv_values = uv_values * 0.5 + uv_shift
            uv_values = ((uv_values + resolution_shift) * resolution).clip(0, resolution - 1)

            uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].floor().long()] = 1
            uv_mask[uv_values[:, 1].floor().long(), uv_values[:, 0].ceil().long()] = 1
            uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].floor().long()] = 1
            uv_mask[uv_values[:, 1].ceil().long(), uv_values[:, 0].ceil().long()] = 1

    uv_mask = crop(uv_mask.unsqueeze(0).unsqueeze(0), min_v, min_u, max_v, max_u)
    return uv_mask.detach().cpu()  # shape [1, 1, resolution, resolution]


@torch.no_grad()
def get_high_res_atlas(atlas_model, min_v, min_u, max_v, max_u, resolution, device="cuda", layer="background"):
    inds_grid = get_grid_indices(0, 0, resolution, resolution)
    inds_grid_chunks = inds_grid.split(50000, dim=0)
    if layer == "background":
        shift = -1
    else:
        shift = 0

    rendered_atlas = torch.zeros((resolution, resolution, 3)).to(device)  # resy, resx, 3
    with torch.no_grad():
        # reconstruct image row by row
        for chunk in inds_grid_chunks:
            normalized_chunk = torch.stack(
                [
                    (chunk[:, 0] / resolution) + shift,
                    (chunk[:, 1] / resolution) + shift,
                ],
                dim=-1,
            ).to(device)

            rgb_output = atlas_model(normalized_chunk)
            rendered_atlas[chunk[:, 1], chunk[:, 0], :] = rgb_output
        # move colors to RGB color domain (0,1)
    rendered_atlas = 0.5 * (rendered_atlas + 1)
    rendered_atlas = rendered_atlas.permute(2, 0, 1).unsqueeze(0)  # shape (1, 3, resy, resx)
    cropped_atlas = crop(
        rendered_atlas,
        min_v,
        min_u,
        max_v,
        max_u,
    )

    return cropped_atlas


def get_grid_indices(x_start, y_start, h_crop, w_crop, t=None):
    crop_indices = torch.meshgrid(torch.arange(w_crop) + x_start, torch.arange(h_crop) + y_start)
    crop_indices = torch.stack(crop_indices, dim=-1)
    crop_indices = crop_indices.reshape(h_crop * w_crop, crop_indices.shape[-1])
    if t is not None:
        crop_indices = torch.cat([crop_indices, t.repeat(h_crop * w_crop, 1)], dim=1)
    return crop_indices


def get_atlas_crops(uv_values, grid_atlas, augmentation=None):
    if len(uv_values.shape) == 3:
        dims = [0, 1]
    elif len(uv_values.shape) == 4:
        dims = [0, 1, 2]
    else:
        raise ValueError("uv_values should be of shape of len 3 or 4")

    min_u, min_v = uv_values.amin(dim=dims).long()
    max_u, max_v = uv_values.amax(dim=dims).ceil().long()
    # min_u, min_v = uv_values.min(dim=0).values
    # max_u, max_v = uv_values.max(dim=0).values

    h_v = max_v - min_v
    w_u = max_u - min_u
    atlas_crop = crop(grid_atlas, min_v, min_u, h_v, w_u)
    if augmentation is not None:
        atlas_crop = augmentation(atlas_crop)
    return atlas_crop, torch.stack([min_u, min_v]), torch.stack([max_u, max_v])


def get_random_crop_params(input_size, output_size):
    w, h = input_size
    th, tw = output_size

    if h + 1 < th or w + 1 < tw:
        raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")

    if w == tw and h == th:
        return 0, 0, h, w

    i = torch.randint(0, h - th + 1, size=(1,)).item()
    j = torch.randint(0, w - tw + 1, size=(1,)).item()
    return i, j, th, tw


def get_masks_boundaries(alpha_video, border=20, threshold=0.95, min_crop_size=2 ** 7 + 1):
    resy, resx = alpha_video.shape[-2:]
    num_frames = alpha_video.shape[0]
    masks_borders = torch.zeros((num_frames, 4), dtype=torch.int64)
    for i, file in enumerate(range(num_frames)):
        mask_im = alpha_video[i]
        mask_im[mask_im >= threshold] = 1
        mask_im[mask_im < threshold] = 0
        all_ones = mask_im.squeeze().nonzero()
        min_y, min_x = torch.maximum(all_ones.min(dim=0).values - border, torch.tensor([0, 0]))
        max_y, max_x = torch.minimum(all_ones.max(dim=0).values + border, torch.tensor([resy, resx]))
        h = max_y - min_y
        w = max_x - min_x
        if h < min_crop_size:
            pad = min_crop_size - h
            if max_y + pad > resy:
                min_y -= pad
            else:
                max_y += pad
            h = max_y - min_y
        if w < min_crop_size:
            pad = min_crop_size - w
            if max_x + pad > resx:
                min_x -= pad
            else:
                max_x += pad
            w = max_x - min_x
        masks_borders[i] = torch.tensor([min_y, min_x, h, w])
    return masks_borders


def get_atlas_bounding_box(mask_boundaries, grid_atlas, video_uvs):
    min_uv = torch.tensor(grid_atlas.shape[-2:], device=video_uvs.device)
    max_uv = torch.tensor([0, 0], device=video_uvs.device)
    for boundary, frame in zip(mask_boundaries, video_uvs):
        cropped_uvs = crop(frame.permute(2, 0, 1).unsqueeze(0), *list(boundary))  # 1,2,h,w
        min_uv = torch.minimum(cropped_uvs.amin(dim=[0, 2, 3]), min_uv).floor().int()
        max_uv = torch.maximum(cropped_uvs.amax(dim=[0, 2, 3]), max_uv).ceil().int()

    hw = max_uv - min_uv
    crop_data = [*list(min_uv)[::-1], *list(hw)[::-1]]
    return crop(grid_atlas, *crop_data), crop_data