File size: 5,156 Bytes
16d007c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import torch
import torch.nn as nn


class Downsampler(nn.Module):
    """
    http://www.realitypixels.com/turk/computergraphics/ResamplingFilters.pdf
    """

    def __init__(
        self, n_planes, factor, kernel_type, phase=0, kernel_width=None, support=None, sigma=None, preserve_size=False
    ):
        super(Downsampler, self).__init__()

        assert phase in [0, 0.5], "phase should be 0 or 0.5"

        if kernel_type == "lanczos2":
            support = 2
            kernel_width = 4 * factor + 1
            kernel_type_ = "lanczos"

        elif kernel_type == "lanczos3":
            support = 3
            kernel_width = 6 * factor + 1
            kernel_type_ = "lanczos"

        elif kernel_type == "gauss12":
            kernel_width = 7
            sigma = 1 / 2
            kernel_type_ = "gauss"

        elif kernel_type == "gauss1sq2":
            kernel_width = 9
            sigma = 1.0 / np.sqrt(2)
            kernel_type_ = "gauss"

        elif kernel_type in ["lanczos", "gauss", "box"]:
            kernel_type_ = kernel_type

        else:
            assert False, "wrong name kernel"

        # note that `kernel width` will be different to actual size for phase = 1/2
        self.kernel = get_kernel(factor, kernel_type_, phase, kernel_width, support=support, sigma=sigma)

        downsampler = nn.Conv2d(n_planes, n_planes, kernel_size=self.kernel.shape, stride=factor, padding=0)
        downsampler.weight.data[:] = 0
        downsampler.bias.data[:] = 0

        kernel_torch = torch.from_numpy(self.kernel)
        for i in range(n_planes):
            downsampler.weight.data[i, i] = kernel_torch

        self.downsampler_ = downsampler

        if preserve_size:

            if self.kernel.shape[0] % 2 == 1:
                pad = int((self.kernel.shape[0] - 1) / 2.0)
            else:
                pad = int((self.kernel.shape[0] - factor) / 2.0)

            self.padding = nn.ReplicationPad2d(pad)

        self.preserve_size = preserve_size

    def forward(self, input):
        if self.preserve_size:
            x = self.padding(input)
        else:
            x = input
        self.x = x
        return self.downsampler_(x)


def get_kernel(factor, kernel_type, phase, kernel_width, support=None, sigma=None):
    assert kernel_type in ["lanczos", "gauss", "box"]

    # factor  = float(factor)
    if phase == 0.5 and kernel_type != "box":
        kernel = np.zeros([kernel_width - 1, kernel_width - 1])
    else:
        kernel = np.zeros([kernel_width, kernel_width])

    if kernel_type == "box":
        assert phase == 0.5, "Box filter is always half-phased"
        kernel[:] = 1.0 / (kernel_width * kernel_width)

    elif kernel_type == "gauss":
        assert sigma, "sigma is not specified"
        assert phase != 0.5, "phase 1/2 for gauss not implemented"

        center = (kernel_width + 1.0) / 2.0
        print(center, kernel_width)
        sigma_sq = sigma * sigma

        for i in range(1, kernel.shape[0] + 1):
            for j in range(1, kernel.shape[1] + 1):
                di = (i - center) / 2.0
                dj = (j - center) / 2.0
                kernel[i - 1][j - 1] = np.exp(-(di * di + dj * dj) / (2 * sigma_sq))
                kernel[i - 1][j - 1] = kernel[i - 1][j - 1] / (2.0 * np.pi * sigma_sq)
    elif kernel_type == "lanczos":
        assert support, "support is not specified"
        center = (kernel_width + 1) / 2.0

        for i in range(1, kernel.shape[0] + 1):
            for j in range(1, kernel.shape[1] + 1):

                if phase == 0.5:
                    di = abs(i + 0.5 - center) / factor
                    dj = abs(j + 0.5 - center) / factor
                else:
                    di = abs(i - center) / factor
                    dj = abs(j - center) / factor

                pi_sq = np.pi * np.pi

                val = 1
                if di != 0:
                    val = val * support * np.sin(np.pi * di) * np.sin(np.pi * di / support)
                    val = val / (np.pi * np.pi * di * di)

                if dj != 0:
                    val = val * support * np.sin(np.pi * dj) * np.sin(np.pi * dj / support)
                    val = val / (np.pi * np.pi * dj * dj)

                kernel[i - 1][j - 1] = val

    else:
        assert False, "wrong method name"

    kernel /= kernel.sum()

    return kernel


# a = Downsampler(n_planes=3, factor=2, kernel_type='lanczos2', phase='1', preserve_size=True)


#################
# Learnable downsampler

# KS = 32
# dow = nn.Sequential(nn.ReplicationPad2d(int((KS - factor) / 2.)), nn.Conv2d(1,1,KS,factor))

# class Apply(nn.Module):
#     def __init__(self, what, dim, *args):
#         super(Apply, self).__init__()
#         self.dim = dim

#         self.what = what

#     def forward(self, input):
#         inputs = []
#         for i in range(input.size(self.dim)):
#             inputs.append(self.what(input.narrow(self.dim, i, 1)))

#         return torch.cat(inputs, dim=self.dim)

#     def __len__(self):
#         return len(self._modules)

# downs = Apply(dow, 1)
# downs.type(dtype)(net_input.type(dtype)).size()