Spaces:
Running
Running
File size: 13,737 Bytes
11ccb1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import math
import numpy as np
import matplotlib
import cv2
from typing import List, Tuple, Union
from .body import BodyResult, Keypoint
eps = 0.01
def smart_resize(x, s):
Ht, Wt = s
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)
def smart_resize_k(x, fx, fy):
if x.ndim == 2:
Ho, Wo = x.shape
Co = 1
else:
Ho, Wo, Co = x.shape
Ht, Wt = Ho * fy, Wo * fx
if Co == 3 or Co == 1:
k = float(Ht + Wt) / float(Ho + Wo)
return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
else:
return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)
def padRightDownCorner(img, stride, padValue):
h = img.shape[0]
w = img.shape[1]
pad = 4 * [None]
pad[0] = 0 # up
pad[1] = 0 # left
pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
img_padded = img
pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
img_padded = np.concatenate((pad_up, img_padded), axis=0)
pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
img_padded = np.concatenate((pad_left, img_padded), axis=1)
pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
img_padded = np.concatenate((img_padded, pad_down), axis=0)
pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
img_padded = np.concatenate((img_padded, pad_right), axis=1)
return img_padded, pad
def transfer(model, model_weights):
transfered_model_weights = {}
for weights_name in model.state_dict().keys():
transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
return transfered_model_weights
def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray:
"""
Draw keypoints and limbs representing body pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose.
keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
H, W, C = canvas.shape
stickwidth = 4
limbSeq = [
[2, 3], [2, 6], [3, 4], [4, 5],
[6, 7], [7, 8], [2, 9], [9, 10],
[10, 11], [2, 12], [12, 13], [13, 14],
[2, 1], [1, 15], [15, 17], [1, 16],
[16, 18],
]
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
for (k1_index, k2_index), color in zip(limbSeq, colors):
keypoint1 = keypoints[k1_index - 1]
keypoint2 = keypoints[k2_index - 1]
if keypoint1 is None or keypoint2 is None:
continue
Y = np.array([keypoint1.x, keypoint2.x]) * float(W)
X = np.array([keypoint1.y, keypoint2.y]) * float(H)
mX = np.mean(X)
mY = np.mean(Y)
length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])
for keypoint, color in zip(keypoints, colors):
if keypoint is None:
continue
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1)
return canvas
def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
"""
Draw keypoints and connections representing hand pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
[10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
for ie, (e1, e2) in enumerate(edges):
k1 = keypoints[e1]
k2 = keypoints[e2]
if k1 is None or k2 is None:
continue
x1 = int(k1.x * W)
y1 = int(k1.y * H)
x2 = int(k2.x * W)
y2 = int(k2.y * H)
if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
return canvas
def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
"""
Draw keypoints representing face pose on a given canvas.
Args:
canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose.
keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn
or None if no keypoints are present.
Returns:
np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose.
Note:
The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
"""
if not keypoints:
return canvas
H, W, C = canvas.shape
for keypoint in keypoints:
x, y = keypoint.x, keypoint.y
x = int(x * W)
y = int(y * H)
if x > eps and y > eps:
cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
return canvas
# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]:
"""
Detect hands in the input body pose keypoints and calculate the bounding box for each hand.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left
corner of the bounding box, the width (height) of the bounding box, and
a boolean flag indicating whether the hand is a left hand (True) or a
right hand (False).
Notes:
- The width and height of the bounding boxes are equal since the network requires squared input.
- The minimum bounding box size is 20 pixels.
"""
ratioWristElbow = 0.33
detect_result = []
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
# right hand: wrist 4, elbow 3, shoulder 2
# left hand: wrist 7, elbow 6, shoulder 5
left_shoulder = keypoints[5]
left_elbow = keypoints[6]
left_wrist = keypoints[7]
right_shoulder = keypoints[2]
right_elbow = keypoints[3]
right_wrist = keypoints[4]
# if any of three not detected
has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist))
has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist))
if not (has_left or has_right):
return []
hands = []
#left hand
if has_left:
hands.append([
left_shoulder.x, left_shoulder.y,
left_elbow.x, left_elbow.y,
left_wrist.x, left_wrist.y,
True
])
# right hand
if has_right:
hands.append([
right_shoulder.x, right_shoulder.y,
right_elbow.x, right_elbow.y,
right_wrist.x, right_wrist.y,
False
])
for x1, y1, x2, y2, x3, y3, is_left in hands:
# pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
# handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
# handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
# const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
# const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
# handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
x = x3 + ratioWristElbow * (x3 - x2)
y = y3 + ratioWristElbow * (y3 - y2)
distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
# x-y refers to the center --> offset to topLeft point
# handRectangle.x -= handRectangle.width / 2.f;
# handRectangle.y -= handRectangle.height / 2.f;
x -= width / 2
y -= width / 2 # width = height
# overflow the image
if x < 0: x = 0
if y < 0: y = 0
width1 = width
width2 = width
if x + width > image_width: width1 = image_width - x
if y + width > image_height: width2 = image_height - y
width = min(width1, width2)
# the max hand box value is 20 pixels
if width >= 20:
detect_result.append((int(x), int(y), int(width), is_left))
'''
return value: [[x, y, w, True if left hand else False]].
width=height since the network require squared input.
x, y is the coordinate of top left
'''
return detect_result
# Written by Lvmin
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]:
"""
Detect the face in the input body pose keypoints and calculate the bounding box for the face.
Args:
body (BodyResult): A BodyResult object containing the detected body pose keypoints.
oriImg (numpy.ndarray): A 3D numpy array representing the original input image.
Returns:
Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the
bounding box and the width (height) of the bounding box, or None if the
face is not detected or the bounding box width is less than 20 pixels.
Notes:
- The width and height of the bounding box are equal.
- The minimum bounding box size is 20 pixels.
"""
# left right eye ear 14 15 16 17
image_height, image_width = oriImg.shape[0:2]
keypoints = body.keypoints
head = keypoints[0]
left_eye = keypoints[14]
right_eye = keypoints[15]
left_ear = keypoints[16]
right_ear = keypoints[17]
if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)):
return None
width = 0.0
x0, y0 = head.x, head.y
if left_eye is not None:
x1, y1 = left_eye.x, left_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if right_eye is not None:
x1, y1 = right_eye.x, right_eye.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 3.0)
if left_ear is not None:
x1, y1 = left_ear.x, left_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
if right_ear is not None:
x1, y1 = right_ear.x, right_ear.y
d = max(abs(x0 - x1), abs(y0 - y1))
width = max(width, d * 1.5)
x, y = x0, y0
x -= width
y -= width
if x < 0:
x = 0
if y < 0:
y = 0
width1 = width * 2
width2 = width * 2
if x + width > image_width:
width1 = image_width - x
if y + width > image_height:
width2 = image_height - y
width = min(width1, width2)
if width >= 20:
return int(x), int(y), int(width)
else:
return None
# get max index of 2d array
def npmax(array):
arrayindex = array.argmax(1)
arrayvalue = array.max(1)
i = arrayvalue.argmax()
j = arrayindex[i]
return i, j |