File size: 13,737 Bytes
11ccb1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import math
import numpy as np
import matplotlib
import cv2
from typing import List, Tuple, Union

from .body import BodyResult, Keypoint

eps = 0.01


def smart_resize(x, s):
    Ht, Wt = s
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize(x[:, :, i], s) for i in range(Co)], axis=2)


def smart_resize_k(x, fx, fy):
    if x.ndim == 2:
        Ho, Wo = x.shape
        Co = 1
    else:
        Ho, Wo, Co = x.shape
    Ht, Wt = Ho * fy, Wo * fx
    if Co == 3 or Co == 1:
        k = float(Ht + Wt) / float(Ho + Wo)
        return cv2.resize(x, (int(Wt), int(Ht)), interpolation=cv2.INTER_AREA if k < 1 else cv2.INTER_LANCZOS4)
    else:
        return np.stack([smart_resize_k(x[:, :, i], fx, fy) for i in range(Co)], axis=2)


def padRightDownCorner(img, stride, padValue):
    h = img.shape[0]
    w = img.shape[1]

    pad = 4 * [None]
    pad[0] = 0 # up
    pad[1] = 0 # left
    pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
    pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right

    img_padded = img
    pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
    img_padded = np.concatenate((pad_up, img_padded), axis=0)
    pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
    img_padded = np.concatenate((pad_left, img_padded), axis=1)
    pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
    img_padded = np.concatenate((img_padded, pad_down), axis=0)
    pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
    img_padded = np.concatenate((img_padded, pad_right), axis=1)

    return img_padded, pad


def transfer(model, model_weights):
    transfered_model_weights = {}
    for weights_name in model.state_dict().keys():
        transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
    return transfered_model_weights


def draw_bodypose(canvas: np.ndarray, keypoints: List[Keypoint]) -> np.ndarray:
    """
    Draw keypoints and limbs representing body pose on a given canvas.

    Args:
        canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the body pose.
        keypoints (List[Keypoint]): A list of Keypoint objects representing the body keypoints to be drawn.

    Returns:
        np.ndarray: A 3D numpy array representing the modified canvas with the drawn body pose.

    Note:
        The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
    """
    H, W, C = canvas.shape
    stickwidth = 4

    limbSeq = [
        [2, 3], [2, 6], [3, 4], [4, 5], 
        [6, 7], [7, 8], [2, 9], [9, 10], 
        [10, 11], [2, 12], [12, 13], [13, 14], 
        [2, 1], [1, 15], [15, 17], [1, 16], 
        [16, 18],
    ]

    colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
              [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
              [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]

    for (k1_index, k2_index), color in zip(limbSeq, colors):
        keypoint1 = keypoints[k1_index - 1]
        keypoint2 = keypoints[k2_index - 1]

        if keypoint1 is None or keypoint2 is None:
            continue

        Y = np.array([keypoint1.x, keypoint2.x]) * float(W)
        X = np.array([keypoint1.y, keypoint2.y]) * float(H)
        mX = np.mean(X)
        mY = np.mean(Y)
        length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
        angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
        polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
        cv2.fillConvexPoly(canvas, polygon, [int(float(c) * 0.6) for c in color])

    for keypoint, color in zip(keypoints, colors):
        if keypoint is None:
            continue

        x, y = keypoint.x, keypoint.y
        x = int(x * W)
        y = int(y * H)
        cv2.circle(canvas, (int(x), int(y)), 4, color, thickness=-1)

    return canvas


def draw_handpose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
    """
    Draw keypoints and connections representing hand pose on a given canvas.

    Args:
        canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the hand pose.
        keypoints (List[Keypoint]| None): A list of Keypoint objects representing the hand keypoints to be drawn
                                          or None if no keypoints are present.

    Returns:
        np.ndarray: A 3D numpy array representing the modified canvas with the drawn hand pose.

    Note:
        The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
    """
    if not keypoints:
        return canvas
    
    H, W, C = canvas.shape

    edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
             [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]

    for ie, (e1, e2) in enumerate(edges):
        k1 = keypoints[e1]
        k2 = keypoints[e2]
        if k1 is None or k2 is None:
            continue
        
        x1 = int(k1.x * W)
        y1 = int(k1.y * H)
        x2 = int(k2.x * W)
        y2 = int(k2.y * H)
        if x1 > eps and y1 > eps and x2 > eps and y2 > eps:
            cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie / float(len(edges)), 1.0, 1.0]) * 255, thickness=2)

    for keypoint in keypoints:
        x, y = keypoint.x, keypoint.y
        x = int(x * W)
        y = int(y * H)
        if x > eps and y > eps:
            cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
    return canvas


def draw_facepose(canvas: np.ndarray, keypoints: Union[List[Keypoint], None]) -> np.ndarray:
    """
    Draw keypoints representing face pose on a given canvas.

    Args:
        canvas (np.ndarray): A 3D numpy array representing the canvas (image) on which to draw the face pose.
        keypoints (List[Keypoint]| None): A list of Keypoint objects representing the face keypoints to be drawn
                                          or None if no keypoints are present.

    Returns:
        np.ndarray: A 3D numpy array representing the modified canvas with the drawn face pose.

    Note:
        The function expects the x and y coordinates of the keypoints to be normalized between 0 and 1.
    """    
    if not keypoints:
        return canvas
    
    H, W, C = canvas.shape
    for keypoint in keypoints:
        x, y = keypoint.x, keypoint.y
        x = int(x * W)
        y = int(y * H)
        if x > eps and y > eps:
            cv2.circle(canvas, (x, y), 3, (255, 255, 255), thickness=-1)
    return canvas


# detect hand according to body pose keypoints
# please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
def handDetect(body: BodyResult, oriImg) -> List[Tuple[int, int, int, bool]]:
    """
    Detect hands in the input body pose keypoints and calculate the bounding box for each hand.

    Args:
        body (BodyResult): A BodyResult object containing the detected body pose keypoints.
        oriImg (numpy.ndarray): A 3D numpy array representing the original input image.

    Returns:
        List[Tuple[int, int, int, bool]]: A list of tuples, each containing the coordinates (x, y) of the top-left
                                          corner of the bounding box, the width (height) of the bounding box, and
                                          a boolean flag indicating whether the hand is a left hand (True) or a
                                          right hand (False).

    Notes:
        - The width and height of the bounding boxes are equal since the network requires squared input.
        - The minimum bounding box size is 20 pixels.
    """
    ratioWristElbow = 0.33
    detect_result = []
    image_height, image_width = oriImg.shape[0:2]
    
    keypoints = body.keypoints
    # right hand: wrist 4, elbow 3, shoulder 2
    # left hand: wrist 7, elbow 6, shoulder 5
    left_shoulder = keypoints[5]
    left_elbow = keypoints[6]
    left_wrist = keypoints[7]
    right_shoulder = keypoints[2]
    right_elbow = keypoints[3]
    right_wrist = keypoints[4]

    # if any of three not detected
    has_left = all(keypoint is not None for keypoint in (left_shoulder, left_elbow, left_wrist))
    has_right = all(keypoint is not None for keypoint in (right_shoulder, right_elbow, right_wrist))
    if not (has_left or has_right):
        return []
    
    hands = []
    #left hand
    if has_left:
        hands.append([
            left_shoulder.x, left_shoulder.y,
            left_elbow.x, left_elbow.y,
            left_wrist.x, left_wrist.y,
            True
        ])
    # right hand
    if has_right:
        hands.append([
            right_shoulder.x, right_shoulder.y,
            right_elbow.x, right_elbow.y,
            right_wrist.x, right_wrist.y,
            False
        ])

    for x1, y1, x2, y2, x3, y3, is_left in hands:
        # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
        # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
        # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
        # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
        # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
        # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
        x = x3 + ratioWristElbow * (x3 - x2)
        y = y3 + ratioWristElbow * (y3 - y2)
        distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
        distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
        width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
        # x-y refers to the center --> offset to topLeft point
        # handRectangle.x -= handRectangle.width / 2.f;
        # handRectangle.y -= handRectangle.height / 2.f;
        x -= width / 2
        y -= width / 2  # width = height
        # overflow the image
        if x < 0: x = 0
        if y < 0: y = 0
        width1 = width
        width2 = width
        if x + width > image_width: width1 = image_width - x
        if y + width > image_height: width2 = image_height - y
        width = min(width1, width2)
        # the max hand box value is 20 pixels
        if width >= 20:
            detect_result.append((int(x), int(y), int(width), is_left))

    '''
    return value: [[x, y, w, True if left hand else False]].
    width=height since the network require squared input.
    x, y is the coordinate of top left 
    '''
    return detect_result


# Written by Lvmin
def faceDetect(body: BodyResult, oriImg) -> Union[Tuple[int, int, int], None]:
    """
    Detect the face in the input body pose keypoints and calculate the bounding box for the face.

    Args:
        body (BodyResult): A BodyResult object containing the detected body pose keypoints.
        oriImg (numpy.ndarray): A 3D numpy array representing the original input image.

    Returns:
        Tuple[int, int, int] | None: A tuple containing the coordinates (x, y) of the top-left corner of the
                                   bounding box and the width (height) of the bounding box, or None if the
                                   face is not detected or the bounding box width is less than 20 pixels.

    Notes:
        - The width and height of the bounding box are equal.
        - The minimum bounding box size is 20 pixels.
    """
    # left right eye ear 14 15 16 17
    image_height, image_width = oriImg.shape[0:2]
    
    keypoints = body.keypoints
    head = keypoints[0]
    left_eye = keypoints[14]
    right_eye = keypoints[15]
    left_ear = keypoints[16]
    right_ear = keypoints[17]
    
    if head is None or all(keypoint is None for keypoint in (left_eye, right_eye, left_ear, right_ear)):
        return None

    width = 0.0
    x0, y0 = head.x, head.y

    if left_eye is not None:
        x1, y1 = left_eye.x, left_eye.y
        d = max(abs(x0 - x1), abs(y0 - y1))
        width = max(width, d * 3.0)

    if right_eye is not None:
        x1, y1 = right_eye.x, right_eye.y
        d = max(abs(x0 - x1), abs(y0 - y1))
        width = max(width, d * 3.0)

    if left_ear is not None:
        x1, y1 = left_ear.x, left_ear.y
        d = max(abs(x0 - x1), abs(y0 - y1))
        width = max(width, d * 1.5)

    if right_ear is not None:
        x1, y1 = right_ear.x, right_ear.y
        d = max(abs(x0 - x1), abs(y0 - y1))
        width = max(width, d * 1.5)

    x, y = x0, y0

    x -= width
    y -= width

    if x < 0:
        x = 0

    if y < 0:
        y = 0

    width1 = width * 2
    width2 = width * 2

    if x + width > image_width:
        width1 = image_width - x

    if y + width > image_height:
        width2 = image_height - y

    width = min(width1, width2)

    if width >= 20:
        return int(x), int(y), int(width)
    else:
        return None


# get max index of 2d array
def npmax(array):
    arrayindex = array.argmax(1)
    arrayvalue = array.max(1)
    i = arrayvalue.argmax()
    j = arrayindex[i]
    return i, j