File size: 984 Bytes
990dc13
 
 
07d5446
 
990dc13
 
 
cf1ce0f
 
 
 
 
 
07d5446
 
990dc13
07d5446
 
 
990dc13
07d5446
 
cf1ce0f
 
 
990dc13
 
 
 
b1ce276
2cdf71f
18f2d2a
990dc13
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
import os
import gradio as gr
import xgboost as xgb
from sklearn.feature_extraction.text import TfidfVectorizer

os.environ["WANDB_DISABLED"] = "true"

label2id =  {
    0: "negative",
    1: "neutral",
    2: "positive"
  }

model_file_name = "xgb_reg.pkl"
vectorizer_file_name = 'vectorizer.pk'

#load
xgb_model_loaded = pickle.load(open(model_file_name, "rb"))
vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb"))

# predict
def predict_sentiment(predict_texts):
    predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts]))
    print(predictions_loaded)
    return label2id[predictions_loaded[0]]

interface = gr.Interface(
    fn=predict_sentiment,
    inputs='text',
    outputs=['text'],
    title='Croatian Movie reviews Sentiment Analysis',
    examples= ["Volim kavu","Ne volim kavu"],
    description='Get the positive/neutral/negative sentiment for the given input.'
)

interface.launch(inline = False)