File size: 15,101 Bytes
2e82449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Copyright Forge 2024

import time
import torch
import contextlib

from backend import stream, memory_management


stash = {}


def weights_manual_cast(layer, x, skip_weight_dtype=False, skip_bias_dtype=False):
    weight, bias, signal = None, None, None
    non_blocking = True

    if getattr(x.device, 'type', None) == 'mps':
        non_blocking = False

    target_dtype = x.dtype
    target_device = x.device

    if skip_weight_dtype:
        weight_args = dict(device=target_device, non_blocking=non_blocking)
    else:
        weight_args = dict(device=target_device, dtype=target_dtype, non_blocking=non_blocking)

    if skip_bias_dtype:
        bias_args = dict(device=target_device, non_blocking=non_blocking)
    else:
        bias_args = dict(device=target_device, dtype=target_dtype, non_blocking=non_blocking)

    if stream.should_use_stream():
        with stream.stream_context()(stream.mover_stream):
            if layer.weight is not None:
                weight = layer.weight.to(**weight_args)
            if layer.bias is not None:
                bias = layer.bias.to(**bias_args)
            signal = stream.mover_stream.record_event()
    else:
        if layer.weight is not None:
            weight = layer.weight.to(**weight_args)
        if layer.bias is not None:
            bias = layer.bias.to(**bias_args)

    return weight, bias, signal


@contextlib.contextmanager
def main_stream_worker(weight, bias, signal):
    if signal is None or not stream.should_use_stream():
        yield
        return

    with stream.stream_context()(stream.current_stream):
        stream.current_stream.wait_event(signal)
        yield
        finished_signal = stream.current_stream.record_event()
        stash[id(finished_signal)] = (weight, bias, finished_signal)

    garbage = []
    for k, (w, b, s) in stash.items():
        if s.query():
            garbage.append(k)

    for k in garbage:
        del stash[k]
    return


def cleanup_cache():
    if not stream.should_use_stream():
        return

    stream.current_stream.synchronize()
    stream.mover_stream.synchronize()
    stash.clear()
    return


current_device = None
current_dtype = None
current_manual_cast_enabled = False
current_bnb_dtype = None


class ForgeOperations:
    class Linear(torch.nn.Module):
        def __init__(self, *args, **kwargs):
            super().__init__()
            self.dummy = torch.nn.Parameter(torch.empty(1, device=current_device, dtype=current_dtype))
            self.weight = None
            self.bias = None
            self.parameters_manual_cast = current_manual_cast_enabled

        def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
            if hasattr(self, 'dummy'):
                if prefix + 'weight' in state_dict:
                    self.weight = torch.nn.Parameter(state_dict[prefix + 'weight'].to(self.dummy))
                if prefix + 'bias' in state_dict:
                    self.bias = torch.nn.Parameter(state_dict[prefix + 'bias'].to(self.dummy))
                del self.dummy
            else:
                super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.linear(x, weight, bias)
            else:
                return torch.nn.functional.linear(x, self.weight, self.bias)

    class Conv2d(torch.nn.Conv2d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                return super().forward(x)

    class Conv3d(torch.nn.Conv3d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                return super().forward(x)

    class Conv1d(torch.nn.Conv1d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return self._conv_forward(x, weight, bias)
            else:
                return super().forward(x)

    class ConvTranspose2d(torch.nn.ConvTranspose2d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 2
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose2d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                return super().forward(x, output_size)

    class ConvTranspose1d(torch.nn.ConvTranspose1d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 1
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose1d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                return super().forward(x, output_size)

    class ConvTranspose3d(torch.nn.ConvTranspose3d):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x, output_size=None):
            if self.parameters_manual_cast:
                num_spatial_dims = 3
                output_padding = self._output_padding(x, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation)

                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.conv_transpose3d(x, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation)
            else:
                return super().forward(x, output_size)

    class GroupNorm(torch.nn.GroupNorm):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.group_norm(x, self.num_groups, weight, bias, self.eps)
            else:
                return super().forward(x)

    class LayerNorm(torch.nn.LayerNorm):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            kwargs['dtype'] = current_dtype
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled

        def reset_parameters(self):
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
            else:
                return super().forward(x)

    class Embedding(torch.nn.Embedding):

        def __init__(self, *args, **kwargs):
            kwargs['device'] = current_device
            super().__init__(*args, **kwargs)
            self.parameters_manual_cast = current_manual_cast_enabled
            self.bias = None

        def reset_parameters(self):
            self.bias = None
            return None

        def forward(self, x):
            if self.parameters_manual_cast:
                weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True)
                with main_stream_worker(weight, bias, signal):
                    return torch.nn.functional.embedding(x, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse)
            else:
                return super().forward(x)


try:
    from backend.operations_bnb import ForgeLoader4Bit, ForgeParams4bit, functional_linear_4bits

    class ForgeOperationsBNB4bits(ForgeOperations):
        class Linear(ForgeLoader4Bit):
            def __init__(self, *args, **kwargs):
                super().__init__(device=current_device, dtype=current_dtype, quant_type=current_bnb_dtype)
                self.parameters_manual_cast = current_manual_cast_enabled

            def forward(self, x):
                self.weight.quant_state = self.quant_state

                if self.bias is not None and self.bias.dtype != x.dtype:
                    # Maybe this can also be set to all non-bnb ops since the cost is very low.
                    # And it only invokes one time, and most linear does not have bias
                    self.bias.data = self.bias.data.to(x.dtype)

                if not self.parameters_manual_cast:
                    return functional_linear_4bits(x, self.weight, self.bias)
                elif not self.weight.bnb_quantized:
                    assert x.device.type == 'cuda', 'BNB Must Use CUDA as Computation Device!'
                    layer_original_device = self.weight.device
                    self.weight = self.weight._quantize(x.device)
                    bias = self.bias.to(x.device) if self.bias is not None else None
                    out = functional_linear_4bits(x, self.weight, bias)
                    self.weight = self.weight.to(layer_original_device)
                    return out
                else:
                    weight, bias, signal = weights_manual_cast(self, x, skip_weight_dtype=True, skip_bias_dtype=True)
                    with main_stream_worker(weight, bias, signal):
                        return functional_linear_4bits(x, weight, bias)

    bnb_avaliable = True
except:
    bnb_avaliable = False


@contextlib.contextmanager
def using_forge_operations(operations=None, device=None, dtype=None, manual_cast_enabled=False, bnb_dtype=None):
    global current_device, current_dtype, current_manual_cast_enabled, current_bnb_dtype

    current_device, current_dtype, current_manual_cast_enabled, current_bnb_dtype = device, dtype, manual_cast_enabled, bnb_dtype

    if operations is None:
        if bnb_avaliable and bnb_dtype in ['nf4', 'fp4']:
            operations = ForgeOperationsBNB4bits
        else:
            operations = ForgeOperations

    op_names = ['Linear', 'Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d', 'GroupNorm', 'LayerNorm', 'Embedding']
    backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}

    try:
        for op_name in op_names:
            setattr(torch.nn, op_name, getattr(operations, op_name))

        yield

    finally:
        for op_name in op_names:
            setattr(torch.nn, op_name, backups[op_name])
    return


def shift_manual_cast(model, enabled):
    for m in model.modules():
        if hasattr(m, 'parameters_manual_cast'):
            m.parameters_manual_cast = enabled
    return


@contextlib.contextmanager
def automatic_memory_management():
    memory_management.free_memory(
        memory_required=3 * 1024 * 1024 * 1024,
        device=memory_management.get_torch_device()
    )

    module_list = []

    original_init = torch.nn.Module.__init__
    original_to = torch.nn.Module.to

    def patched_init(self, *args, **kwargs):
        module_list.append(self)
        return original_init(self, *args, **kwargs)

    def patched_to(self, *args, **kwargs):
        module_list.append(self)
        return original_to(self, *args, **kwargs)

    try:
        torch.nn.Module.__init__ = patched_init
        torch.nn.Module.to = patched_to
        yield
    finally:
        torch.nn.Module.__init__ = original_init
        torch.nn.Module.to = original_to

    start = time.perf_counter()
    module_list = set(module_list)

    for module in module_list:
        module.cpu()

    memory_management.soft_empty_cache()
    end = time.perf_counter()

    print(f'Automatic Memory Management: {len(module_list)} Modules in {(end - start):.2f} seconds.')
    return