File size: 35,737 Bytes
4a51346
 
 
4d3a8e4
4a51346
57b936b
 
4a51346
57b936b
 
 
 
4a51346
 
 
 
4d3a8e4
57b936b
4a51346
 
4d3a8e4
4a51346
 
 
 
 
 
 
4d3a8e4
57b936b
7ad16c9
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
 
57b936b
4a51346
 
 
 
 
 
57b936b
 
 
 
 
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b936b
 
4a51346
4d3a8e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b936b
4a51346
 
57b936b
 
 
 
 
 
 
 
4a51346
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
57b936b
 
4d3a8e4
57b936b
 
 
4a51346
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
 
 
57b936b
 
4a51346
57b936b
4a51346
57b936b
 
4a51346
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
 
 
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
 
 
 
57b936b
4a51346
 
57b936b
 
 
 
 
 
4a51346
 
 
 
57b936b
 
4a51346
 
 
 
 
 
 
 
 
 
 
57b936b
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b936b
 
 
 
 
 
 
 
 
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b936b
4a51346
 
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
 
 
 
 
 
 
 
 
57b936b
4a51346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b936b
4a51346
 
 
 
 
57b936b
 
4a51346
 
 
 
 
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
ebee804
57b936b
 
 
 
 
 
 
 
c33c6b8
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
57b936b
d79e351
7ad16c9
0b1f152
4a51346
57b936b
4a51346
 
 
 
 
 
 
 
 
57b936b
4a51346
57b936b
 
 
 
 
 
 
 
32213e2
57b936b
b4fb661
57b936b
 
 
 
e2bd716
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a51346
0b1f152
406bea4
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406bea4
57b936b
 
 
 
 
 
 
 
406bea4
57b936b
 
 
 
 
 
 
 
 
 
 
 
 
b4fb661
 
 
57b936b
 
 
 
 
 
 
 
 
 
 
 
b4fb661
 
 
57b936b
 
 
32213e2
 
 
 
 
57b936b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
import os
import configparser

from typing import List, Union, Optional, Any, Dict, cast
import re
import sys
import time
import json
import asyncio
import aiohttp
import requests
import threading

import pandas as pd
from langchain import SerpAPIWrapper, LLMChain
from langchain.agents import Tool, AgentType, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.callbacks.manager import Callbacks
from langchain.callbacks.streaming_stdout_final_only import FinalStreamingStdOutCallbackHandler
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.chains.query_constructor.ir import StructuredQuery
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.document_loaders import DataFrameLoader, SeleniumURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.prompts import PromptTemplate, StringPromptTemplate, load_prompt, BaseChatPromptTemplate
from langchain.llms import OpenAI
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.schema import AgentAction, AgentFinish, HumanMessage, Document
from langchain.vectorstores import Chroma

import gradio as gr

# config = configparser.ConfigParser()
# config.read('./secrets.ini')
# openai_api_key = config['OPENAI']['OPENAI_API_KEY']
# serper_api_key = config['SERPER']['SERPER_API_KEY']
# serp_api_key = config['SERPAPI']['SERPAPI_API_KEY']
# kakao_api_key = config['KAKAO_MAP']['KAKAO_API_KEY']
# huggingface_token = config['HUGGINGFACE']['HUGGINGFACE_TOKEN']


# os.environ.update({'OPENAI_API_KEY': openai_api_key})
# os.environ.update({'SERPER_API_KEY': serper_api_key})
# os.environ.update({'SERPAPI_API_KEY': serp_api_key})
# os.environ.update({'KAKAO_API_KEY': kakao_api_key})
# os.environ.update({'HUGGINGFACE_TOKEN': huggingface_token})

huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
kakao_api_key = os.getenv('KAKAO_API_KEY')

### Load wine database json
df = pd.read_json('./data/unified_wine_data.json', encoding='utf-8', lines=True)
### Prepare Langchain Tool
#### Tool1: Wine database 1
df['page_content'] = ''
columns = ['name', 'pairing']
for column in columns:
    if column != 'page_content':
        df['page_content'] += column + ':' + df[column].astype(str) + ','
columns = ['rating', 'price', 'body', 'sweetness', 'alcohol', 'acidity', 'tannin']
for idx in df.index:
    for column in columns:
        if type(df[column][idx]) == str:
            df[column][idx] = df[column][idx].replace(',', '')
        df[column][idx] = float(df[column][idx]) if df[column][idx] != '' else -1
loader =DataFrameLoader(data_frame=df, page_content_column='page_content')
docs = loader.load()
embeddings = OpenAIEmbeddings()
# ์•„๋ž˜๋Š” wine database1์— metadata_field Attribute์ด๋‹ค. ์•„๋ž˜๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์„œ์น˜๋ฅผ ์ง„ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค.
metadata_field_info = [
    AttributeInfo(
        name="body",
        description="1-5 rating for the body of wine",
        type="int",
    ),
    AttributeInfo(
        name="tannin",
        description="1-5 rating for the tannin of wine",
        type="int",
    ),
    AttributeInfo(
        name="sweetness",
        description="1-5 rating for the sweetness of wine",
        type="int",
    ),
    AttributeInfo(
        name="alcohol",
        description="1-5 rating for the alcohol of wine",
        type="int",
    ),
    AttributeInfo(
        name="price",
        description="The price of the wine",
        type="int",
    ),
    AttributeInfo(
        name="rating", 
        description="1-5 rating for the wine", 
        type="float"
    ),
    AttributeInfo(
        name="wine_type", 
        description="The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'", 
        type="string"
    ),
    AttributeInfo(
        name="country", 
        description="The country of wine. It can be '๊ธฐํƒ€ ์‹ ๋Œ€๋ฅ™', '๊ธฐํƒ€๊ตฌ๋Œ€๋ฅ™', '๋‰ด์งˆ๋žœ๋“œ', '๋…์ผ', '๋ฏธ๊ตญ', '์ŠคํŽ˜์ธ', '์•„๋ฅดํ—จํ‹ฐ๋‚˜', '์ดํƒˆ๋ฆฌ์•„', '์น ๋ ˆ', 'ํฌ๋ฃจํˆฌ์นผ', 'ํ”„๋ž‘์Šค', 'ํ˜ธ์ฃผ'", 
        type="float"
    ),
]

wine_vectorstore = Chroma.from_documents(docs, embeddings)
document_content_description = "A database of wines. 'name' and 'pairing' must be included in the query, and 'Body', 'Tannin', 'Sweetness', 'Alcohol', 'Price', 'Rating', 'Wine_Type', and 'Country' can be included in the filter. query and filter must be form of 'key: value'. For example, query: 'name: ๋”ํŽ˜๋ฆฌ๋‡ฝ, pairing:์œก๋ฅ˜'."
llm = OpenAI(temperature=0)

class CustomSelfQueryRetriever(SelfQueryRetriever):
    async def aget_relevant_documents(self, query: str, callbacks: Callbacks = None) -> List[Document]:
        inputs = self.llm_chain.prep_inputs({"query": query})
        structured_query = cast(
            StructuredQuery,
            self.llm_chain.predict_and_parse(callbacks=callbacks, **inputs),
        )
        if self.verbose:
            print(structured_query)
        new_query, new_kwargs = self.structured_query_translator.visit_structured_query(
            structured_query
        )
        if structured_query.limit is not None:
            new_kwargs["k"] = structured_query.limit

        if self.use_original_query:
            new_query = query

        search_kwargs = {**self.search_kwargs, **new_kwargs}
        docs = self.vectorstore.search(new_query, self.search_type, **search_kwargs)
        return docs

wine_retriever = CustomSelfQueryRetriever.from_llm(
    llm, wine_vectorstore, document_content_description, metadata_field_info, verbose=True
)  # Added missing closing parenthesis

#### Tool2: Wine bar database
df = pd.read_json('./data/wine_bar.json', encoding='utf-8', lines=True)
df['page_content'] = ''
columns = ['summary']
for column in columns:
    if column != 'page_content':
        df['page_content'] += df[column].astype(str) + ','
df = df.drop(columns=['review'])

loader =DataFrameLoader(data_frame=df, page_content_column='page_content')
docs = loader.load()
embeddings = OpenAIEmbeddings()
wine_bar_vectorstore = Chroma.from_documents(docs, embeddings)
wine_bar_vectorstore.similarity_search_with_score('์—ฌ์ž์นœ๊ตฌ๋ž‘ ๊ฐˆ๋งŒํ•œ ์™€์ธ๋ฐ”', k=5)
metadata_field_info = [
    AttributeInfo(
        name="name",
        description="The name of the wine bar",
        type="str",
    ),
    AttributeInfo(
        name="rating", 
        description="1-5 rating for the wine bar", 
        type="float"
    ),
    AttributeInfo(
        name="district",
        description="The district of the wine bar.",
        type="str",
    ),
]

document_content_description = "Database of a winebar"
llm = OpenAI(temperature=0)
wine_bar_retriever = CustomSelfQueryRetriever.from_llm(
    llm, wine_bar_vectorstore, document_content_description, metadata_field_info=metadata_field_info, verbose=True
)  # Added missing closing parenthesis
#### Tool3: Search in Google
search = SerpAPIWrapper()
#### Tool4: Kakao Map API


class KakaoMap:
    def __init__(self):
        self.url = 'https://dapi.kakao.com/v2/local/search/keyword.json' 
        self.headers = {"Authorization": f"KakaoAK {kakao_api_key}"}
        
    async def arun(self, query):
        async with aiohttp.ClientSession() as session:
            params = {'query': query,'page': 1}
            async with session.get(self.url, params=params, headers=self.headers) as response:
                places = await response.json()
                address = places['documents'][0]['address_name']
                if not address.split()[0].startswith('์„œ์šธ'):
                    return {'district': 'not in seoul'}
                else:
                    return {'district': address.split()[1]}
                
    def run(self, query):
        params = {'query': query,'page': 1}
        places = requests.get(self.url, params=params, headers=self.headers).json()
        address = places['documents'][0]['address_name']
        if not address.split()[0].startswith('์„œ์šธ'):
            return {'district': 'not in seoul'}
        else:
            return {'district': address.split()[1]}
kakao_map = KakaoMap()
tools = [
    Tool(
        name="Wine database",
        func=wine_retriever.get_relevant_documents,
        coroutine=wine_retriever.aget_relevant_documents,
        description="""
Database about the wines in wine store.
You can search wines with the following attributes:
- price: The price range of the wine. You have to specify greater than and less than.
- rating: 1-5 rating float for the wine. You have to specify greater than and less than.
- wine_type: The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'
- name: The name of wine.
- pairing: The food pairing of wine.
The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000์› or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: ๊ณ ๊ธฐ'.
--------------------------------------------------
You can get the following attributes:
- url: Wine purchase site URL.
- vivino_link: Vivino link of wine.
- flavor_description
- site_name: Wine purchase site name.
- name: The name of wine in korean.
- en_name: The name of wine in english.
- price: The price of wine in ์›.
- rating: 1-5 vivino rating.
- wine_type: The type of wine.
- pairing: The food pairing of wine.
- pickup_location: Offline stores where you can purchase wine
- img_url
- country
- body
- tannin
- sweetness
- acidity
- alcohol
- grape
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
    ),
    Tool(
        name = "Wine bar database",
        func=wine_bar_retriever.get_relevant_documents,
        coroutine=wine_bar_retriever.aget_relevant_documents,
        description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar."
"""
- query: The query of winebar. You can search wines with review data like mood or something.
- name: The name of winebar.
- price: The average price point of a wine bar.
- rating: 1-5 rating float for the wine bar. 
- district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: ๊ฐ•๋‚จ๊ตฌ'
The form of Action Input must be 'key1: value1, key2: value2, ...'. 
--------------------------------------------------
You can get the following attributes:
- name: The name of winebar.
- url: Wine purchase site URL.
- rating: 1-5 ๋ง๊ณ ํ”Œ๋ ˆ์ดํŠธ(๋ง›์ง‘๊ฒ€์ƒ‰ ์•ฑ) rating.
- summary: Summarized information about wine bars
- address
- phone
- parking
- opening_hours
- menu
- holidays
- img_url
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
    ),
    Tool(
        name = "Search",
        func=search.run,
        coroutine=search.arun,
        description="Useful for when you need to ask with search. Search in English only."
    ),
    Tool(
        name = "Map",
        func=kakao_map.run,
        coroutine=kakao_map.arun,
        description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district."
    ),
]
template = """
Your role is a chatbot that asks customers questions about wine and makes recommendations.
Never forget your name is "์ด์šฐ์„ ".
Keep your responses in short length to retain the user's attention unless you describe the wine for recommendations.
Be sure to actively empathize and respond to your users.
Only generate one response at a time! When you are done generating, end with '<END_OF_TURN>' to give the user a chance to respond.
Responses should be in Korean.

Complete the objective as best you can. You have access to the following tools:

{tools}

Use the following format:
Thought: you should always think about what to do
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Desired Outcome: the desired outcome from the action (optional)
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
์ด์šฐ์„ : the final response to the user

You must respond according to the conversation stage within the triple backticks and conversation history within in '======'.

Current conversation stage: 
```{conversation_stage}```

Conversation history: 
=======
{conversation_history}
=======

Last user saying: {input}
{agent_scratchpad}
"""

conversation_stages_dict = {
    "1": "Introduction: Start the conversation by introducing yourself. Maintain politeness, respect, and a professional tone.",
    "2": "Needs Analysis: Identify the customer's needs to make wine recommendations. Note that the wine database tools are not available. You ask about the occasion the customer will enjoy the wine, what they eat with it, and their desired price point. Ask only ONE question at a time.",
    "3": "Checking Price Range: Asking the customer's preferred price point. Again, remember that the tool for this is not available. But if you know the customer's perferences and price range, then search for the three most suitable wines with tool and recommend them product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image.",
    "4": "Wine Recommendation: Propose the three most suitable wines based on the customer's needs and price range. Before the recommendation, you should have identified the occasion the customer will enjoy the wine, what they will eat with it, and their desired price point. Each wine recommendation should form of product cards in a list format with a Vivino link, price, rating, wine type, flavor description, and image. Use only wines available in the database for recommendations. If there are no suitable wines in the database, inform the customer. After making a recommendation, inquire whether the customer likes the suggested wine.",
    "5": "Sales: If the customer approves of the recommended wine, provide a detailed description. Supply a product card in a list format with a Vivino link, price, rating, wine type, flavor description, and image.",
    "6": "Location Suggestions: Recommend wine bars based on the customer's location and occasion. Before making a recommendation, always use the map tool to find the district of the customer's preferred location. Then use the wine bar database tool to find a suitable wine bar. Provide form of product cards in a list format with the wine bar's name, url, rating, address, menu, opening_hours, holidays, phone, summary, and image with img_urls.",
    "7": "Concluding the Conversation: Respond appropriately to the customer's comments to wrap up the conversation.",
    "8": "Questions and Answers: This stage involves answering customer's inquiries. Use the search tool or wine database tool to provide specific answers where possible. Describe answer as detailed as possible",
    "9": "Other Situations: Use this step when the situation does not fit into any of the steps between 1 and 8."
}

# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
    # The template to use
    template: str
    # The list of tools available
    tools: List[Tool]
    
    def format(self, **kwargs) -> str:
        stage_number = kwargs.pop("stage_number")
        kwargs["conversation_stage"] = conversation_stages_dict[stage_number]
        # Get the intermediate steps (AgentAction, Observation tuples)
        # Format them in a particular way
        intermediate_steps = kwargs.pop("intermediate_steps")
        thoughts = ""
        special_chars = "()'[]{}"
        for action, observation in intermediate_steps:
            thoughts += action.log

            if ('Desired Outcome: ' in action.log) and (('Action: Wine database' in action.log) or ('Action: Wine bar database' in action.log)):
                regex = r"Desired Outcome:(.*)"
                match = re.search(regex, action.log, re.DOTALL)
                if not match:
                    raise ValueError(f"Could not parse Desired Outcome: `{action.log}`")
                desired_outcome_keys = [key.strip() for key in match.group(1).split(',')]

                pattern = re.compile(r'metadata=\{(.*?)\}')
                matches = pattern.findall(f'{observation}')
                documents = ['{'+f'{match}'+'}' for match in matches]
                
                pattern = re.compile(r"'(\w+)':\s*('[^']+'|\b[^\s,]+\b)")
                output=[]

                for doc in documents:
                    # Extract key-value pairs from the document string
                    matches = pattern.findall(doc)

                    # Convert matches to a dictionary
                    doc_dict = dict(matches)

                    # Create a new dictionary containing only the desired keys
                    item_dict = {}
                    for key in desired_outcome_keys:
                        value = doc_dict.get(key, "")
                        for c in special_chars:
                            value = value.replace(c, "")                        
                        item_dict[key] = value
                    output.append(item_dict)
                
                observation = ','.join([str(i) for i in output])

            thoughts += f"\nObservation: {observation}\nThought: "
        # Set the agent_scratchpad variable to that value
        kwargs["agent_scratchpad"] = thoughts
        # Create a tools variable from the list of tools provided
        kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
        # Create a list of tool names for the tools provided
        kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
        return self.template.format(**kwargs)


prompt = CustomPromptTemplate(
    template=template,
    tools=tools,
    input_variables=["input", "intermediate_steps", "conversation_history", "stage_number"]
)
class CustomOutputParser(AgentOutputParser):
    
    def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
        # Check if agent should finish
        if "์ด์šฐ์„ : " in llm_output:
            return AgentFinish(
                # Return values is generally always a dictionary with a single `output` key
                # It is not recommended to try anything else at the moment :)
                return_values={"output": llm_output.split("์ด์šฐ์„ : ")[-1].strip()},
                log=llm_output,
            )
        # Parse out the action and action input
        regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*?)\n"
        match = re.search(regex, llm_output, re.DOTALL)
        if not match:
            raise ValueError(f"Could not parse LLM output: `{llm_output}`")
        action = match.group(1).strip()
        action_input = match.group(2)
        # desired_outcome = match.group(3).strip() if match.group(3) else None

        # Return the action and action input
        return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)

output_parser = CustomOutputParser()

### Gradio

class CustomStreamingStdOutCallbackHandler(FinalStreamingStdOutCallbackHandler):
    """Callback handler for streaming in agents.
    Only works with agents using LLMs that support streaming.

    The output will be streamed until "<END" is reached.
    """
    def __init__(
        self,
        *,
        answer_prefix_tokens: Optional[List[str]] = None,
        end_prefix_tokens: str = "<END",
        strip_tokens: bool = True,
        stream_prefix: bool = False,
        sender: str
    ) -> None:
        """Instantiate EofStreamingStdOutCallbackHandler.

        Args:
            answer_prefix_tokens: Token sequence that prefixes the anwer.
                Default is ["Final", "Answer", ":"]
            end_of_file_token: Token that signals end of file.
                Default is "END"
            strip_tokens: Ignore white spaces and new lines when comparing
                answer_prefix_tokens to last tokens? (to determine if answer has been
                reached)
            stream_prefix: Should answer prefix itself also be streamed?
        """
        super().__init__(answer_prefix_tokens=answer_prefix_tokens, strip_tokens=strip_tokens, stream_prefix=stream_prefix)
        self.end_prefix_tokens = end_prefix_tokens
        self.end_reached = False
        self.sender = sender

    def append_to_last_tokens(self, token: str) -> None:
        self.last_tokens.append(token)
        self.last_tokens_stripped.append(token.strip())
        if len(self.last_tokens) > 5:
            self.last_tokens.pop(0)
            self.last_tokens_stripped.pop(0)

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts running."""
        self.answer_reached = False
        self.end_reached = False

    def check_if_answer_reached(self) -> bool:
        if self.strip_tokens:
            return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped
        else:
            unfied_last_tokens = ''.join(self.last_tokens)
            try:
                unfied_last_tokens.index(self.answer_prefix_tokens)
                return True
            except:
                return False
            
    def check_if_end_reached(self) -> bool:
        if self.strip_tokens:
            return ''.join(self.last_tokens_stripped) in self.answer_prefix_tokens_stripped
        else:
            unfied_last_tokens = ''.join(self.last_tokens)
            try:
                unfied_last_tokens.index(self.end_prefix_tokens)
                self.sender[1] = True
                return True
            except:
                # try:
                #     unfied_last_tokens.index('Action Input')
                #     self.sender[1] = False
                #     return False
                # except:
                #     return False
                return False

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run on new LLM token. Only available when streaming is enabled."""
        # Remember the last n tokens, where n = len(answer_prefix_tokens)
        self.append_to_last_tokens(token)
        
        # Check if the last n tokens match the answer_prefix_tokens list ...
        if not self.answer_reached and self.check_if_answer_reached():
            self.answer_reached = True
            if self.stream_prefix:
                for t in self.last_tokens:
                    sys.stdout.write(t)
                sys.stdout.flush()
            return
        
        if not self.end_reached and self.check_if_end_reached():
            self.end_reached = True

        if self.end_reached:
            pass
        elif self.answer_reached:
            if self.last_tokens[-2] == ":":
                pass
            else:
                self.sender[0] += self.last_tokens[-2]

class UnifiedAgent:
    def __init__(self):

        tools = [
    Tool(
        name="Wine database",
        func=wine_retriever.get_relevant_documents,
        coroutine=wine_retriever.aget_relevant_documents,
        description="""
Database about the wines in wine store.
You can search wines with the following attributes:
- price: The price range of the wine. You have to specify greater than and less than.
- rating: 1-5 rating float for the wine. You have to specify greater than and less than.
- wine_type: The type of wine. It can be '๋ ˆ๋“œ', '๋กœ์ œ', '์ŠคํŒŒํด๋ง', 'ํ™”์ดํŠธ', '๋””์ €ํŠธ', '์ฃผ์ •๊ฐ•ํ™”'
- name: The name of wine.
- pairing: The food pairing of wine.
The form of Action Input must be 'key1: value1, key2: value2, ...'. For example, to search for wines with a rating of less than 3 points, a price range of 50000์› or more, and a meat pairing, enter 'rating: gt 0 lt 3, price: gt 50000, pairing: ๊ณ ๊ธฐ'.
--------------------------------------------------
You can get the following attributes:
- url: Wine purchase site URL.
- vivino_link: Vivino link of wine.
- flavor_description
- site_name: Wine purchase site name.
- name: The name of wine in korean.
- en_name: The name of wine in english.
- price: The price of wine in ์›.
- rating: 1-5 vivino rating.
- wine_type: The type of wine.
- pairing: The food pairing of wine.
- pickup_location: Offline stores where you can purchase wine
- img_url
- country
- body
- tannin
- sweetness
- acidity
- alcohol
- grape
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
    ),
    Tool(
        name = "Wine bar database",
        func=wine_bar_retriever.get_relevant_documents,
        coroutine=wine_bar_retriever.aget_relevant_documents,
        description="Database about the winebars in Seoul. It should be the first thing you use when looking for information about a wine bar."
"""
- query: The query of winebar. You can search wines with review data like mood or something.
- name: The name of winebar.
- price: The average price point of a wine bar.
- rating: 1-5 rating float for the wine bar. 
- district: The district of wine bar. Input district must be korean. For example, if you want to search for wines in Gangnam, enter 'district: ๊ฐ•๋‚จ๊ตฌ'
The form of Action Input must be 'key1: value1, key2: value2, ...'. 
--------------------------------------------------
You can get the following attributes:
- name: The name of winebar.
- url: Wine purchase site URL.
- rating: 1-5 ๋ง๊ณ ํ”Œ๋ ˆ์ดํŠธ(๋ง›์ง‘๊ฒ€์ƒ‰ ์•ฑ) rating.
- summary: Summarized information about wine bars
- address
- phone
- parking
- opening_hours
- menu
- holidays
- img_url
The form of Desired Outcome must be 'key1, key2, ...'. For example to get the name and price of wine, enter 'name, price'.
"""
    ),
    Tool(
        name = "Search",
        func=search.run,
        coroutine=search.arun,
        description="Useful for when you need to ask with search. Search in English only."
    ),
    Tool(
        name = "Map",
        func=kakao_map.run,
        coroutine=kakao_map.arun,
        description="The tool used to draw a district for a region. When looking for wine bars, you can use this before applying filters based on location. The query must be in Korean. You can get the following attribute: district."
    ),
]

        llm_chain = LLMChain(llm=ChatOpenAI(model='gpt-3.5-turbo', temperature=0.5, streaming=True), prompt=prompt, verbose=False,)

        tool_names = [tool.name for tool in tools]
        agent = LLMSingleActionAgent(
            llm_chain=llm_chain, 
            output_parser=output_parser,
            stop=["\nObservation:"], 
            allowed_tools=tool_names
        )
        agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=False)

        self.agent_executor = agent_executor

    async def arun(self, sender, *args, **kwargs):
        resp = await self.agent_executor.arun(kwargs, callbacks=[CustomStreamingStdOutCallbackHandler(answer_prefix_tokens='์ด์šฐ์„ :', end_prefix_tokens='<END', strip_tokens=False, sender=sender)])
        return resp


class UnifiedChain:
    def __init__(self):
        stage_analyzer_inception_prompt = load_prompt("./templates/stage_analyzer_inception_prompt_template.json")
        llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.0)
        stage_analyzer_chain = LLMChain(
            llm=llm,
            prompt=stage_analyzer_inception_prompt, 
            verbose=False, 
            output_key="stage_number")
        
        user_response_prompt = load_prompt("./templates/user_response_prompt.json")
        # ๋žญ์ฒด์ธ ๋ชจ๋ธ ์„ ์–ธ, ๋žญ์ฒด์ธ์€ ์–ธ์–ด๋ชจ๋ธ๊ณผ ํ”„๋กฌํ”„ํŠธ๋กœ ๊ตฌ์„ฑ๋ฉ๋‹ˆ๋‹ค.
        llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0.5)
        user_response_chain = LLMChain(
            llm=llm,
            prompt=user_response_prompt, 
            verbose=False, # ๊ณผ์ •์„ ์ถœ๋ ฅํ• ์ง€
            output_key="user_responses"
        )

        self.stage_analyzer_chain = stage_analyzer_chain
        self.user_response_chain = user_response_chain

    async def arun_stage_analyzer_chain(self, *args, **kwargs):
        resp = await self.stage_analyzer_chain.arun(kwargs)
        return resp
    
    async def arun_user_response_chain(self, *args, **kwargs):
        resp = await self.user_response_chain.arun(kwargs)
        return resp
    
unified_chain = UnifiedChain()
unified_agent = UnifiedAgent()

# logging
hf_writer = gr.HuggingFaceDatasetSaver(huggingface_token, "chatwine-korean")


with gr.Blocks(css='#chatbot .overflow-y-auto{height:750px}') as demo:
    
    with gr.Row():
        gr.HTML("""<div style="text-align: center; max-width: 500px; margin: 0 auto;">
            <div>
                <h1>ChatWine</h1>
            </div>
            <p style="margin-bottom: 10px; font-size: 94%">
                LinkedIn <a href="https://www.linkedin.com/company/audrey-ai/about/">Audrey.ai</a>
            </p>
        </div>""")
    
    chatbot = gr.Chatbot()

    with gr.Row():
        with gr.Column(scale=0.85):
            msg = gr.Textbox()
        with gr.Column(scale=0.15, min_width=0):
            submit_btn = gr.Button("์ „์†ก")

    user_response_examples = gr.Dataset(samples=[["์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"]], components=[msg], type="index")
    clear_btn = gr.ClearButton([msg, chatbot])

    dev_mod = False
    cur_stage = gr.Textbox(visible=dev_mod, interactive=False, label='current_stage')
    stage_hist = gr.Textbox(visible=dev_mod, value="stage history: ", interactive=False, label='stage history')
    chat_hist = gr.Textbox(visible=dev_mod, interactive=False, label='chatting_history')
    response_examples_text = gr.Textbox(visible=dev_mod, interactive=False, value="์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜", label='response_examples')
    hf_writer.setup(components=[chat_hist, stage_hist, response_examples_text], flagging_dir="chatwine-korean")

    def click_flag_btn(*args):
        hf_writer.flag(flag_data=[*args])

    def clean(*args):
        return gr.Dataset.update(samples=[["์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?"], ["์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"]]), "", "stage history: ", "", "์ด๋ฒˆ ์ฃผ์— ์นœ๊ตฌ๋“ค๊ณผ ๋ชจ์ž„์ด ์žˆ๋Š”๋ฐ, ํ›Œ๋ฅญํ•œ ์™€์ธ ํ•œ ๋ณ‘์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์ž…๋ฌธ์ž์—๊ฒŒ ์ข‹์€ ์™€์ธ์„ ์ถ”์ฒœํ•ด์ค„๋ž˜?|์—ฐ์ธ๊ณผ ๊ฐ€๊ธฐ ์ข‹์€ ์™€์ธ๋ฐ”๋ฅผ ์•Œ๋ ค์ค˜"

    def load_example(response_text, input_idx):
        response_examples = []
        for user_response_example in response_text.split('|'):
            response_examples.append([user_response_example])
        return response_examples[input_idx][0]

    async def agent_run(agent_exec, inp, sender):
        sender[0] = ""
        await agent_exec.arun(inp)

    def user_chat(user_message, chat_history_list, chat_history):
        return (chat_history_list + [[user_message, None]], chat_history + f"User: {user_message} <END_OF_TURN>\n", [])

    async def bot_stage_pred(user_response, chat_history, stage_history):
        pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[:-2])
        if pre_chat_history != '':
            pre_chat_history += '<END_OF_TURN>'
        # stage_number = unified_chain.stage_analyzer_chain.run({'conversation_history': pre_chat_history, 'stage_history': stage_history.replace('stage history: ', ''), 'last_user_saying':user_response+' <END_OF_TURN>\n'})
        stage_number = await unified_chain.arun_stage_analyzer_chain(conversation_history=pre_chat_history, stage_history= stage_history.replace('stage history: ', ''), last_user_saying=user_response+' <END_OF_TURN>\n')
        stage_number = stage_number[-1]
        stage_history += stage_number if stage_history == "stage history: " else ", " + stage_number
        print(stage_history)

        return stage_number, stage_history

    async def bot_chat(user_response, chat_history, chat_history_list, current_stage): # stream output by yielding
        
        pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[:-2])
        if pre_chat_history != '':
            pre_chat_history += '<END_OF_TURN>'

        sender = ["", False]        
        task = asyncio.create_task(unified_agent.arun(sender = sender, input=user_response+' <END_OF_TURN>\n', conversation_history=pre_chat_history, stage_number= current_stage))
        await asyncio.sleep(0)

        while(sender[1] == False):
            await asyncio.sleep(0.2)
            chat_history_list[-1][1] = sender[0]
            yield chat_history_list, chat_history + f"์ด์šฐ์„ : {sender[0]}<END_OF_TURN>\n"

        chat_history_list[-1][1] = sender[0]
        print(chat_history + f"์ด์šฐ์„ : {sender[0]}<END_OF_TURN>\n")
        yield chat_history_list, chat_history + f"์ด์šฐ์„ : {sender[0]}<END_OF_TURN>\n"

    async def bot_response_pred(chat_history):
        response_examples = []
        pre_chat_history = '<END_OF_TURN>'.join(chat_history.split('<END_OF_TURN>')[-3:])
        out = await unified_chain.arun_user_response_chain(conversation_history=pre_chat_history)
        for user_response_example in out.split('|'):
            response_examples.append([user_response_example])
        print(response_examples)
        return [response_examples, out, ""]
    
    # btn.click(lambda *args: hf_writer.flag(args), [msg, chat_hist, stage_hist, response_examples_text], None, preprocess=False)

    msg.submit(
        user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False
    ).then(
        bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False
    ).then(
        bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist]
    ).then(
        bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg]
    )
    # .then(
    #     click_flag_btn, [chat_hist, stage_hist, response_examples_text], None
    # )



    submit_btn.click(
        user_chat, [msg, chatbot, chat_hist], [chatbot, chat_hist, user_response_examples], queue=False
    ).then(
        bot_stage_pred, [msg, chat_hist, stage_hist], [cur_stage, stage_hist], queue=False
    ).then(
        bot_chat, [msg, chat_hist, chatbot, cur_stage], [chatbot, chat_hist]
    ).then(
        bot_response_pred, chat_hist, [user_response_examples, response_examples_text, msg]
    )
    # .then(
    #     click_flag_btn, [chat_hist, stage_hist, response_examples_text], None
    # )



    clear_btn.click(
        clean, 
        inputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text], 
        outputs=[user_response_examples, cur_stage, stage_hist, chat_hist, response_examples_text], 
        queue=False)
    user_response_examples.click(load_example, inputs=[response_examples_text, user_response_examples], outputs=[msg], queue=False)
demo.queue(concurrency_count=100)
demo.launch()