File size: 3,681 Bytes
fe5faf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dacd36a
fe5faf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from pathlib import Path

import streamlit as st
from PIL import Image
st.set_page_config(
    page_title="NLP WEB APP"
)


# --- PATH SETTINGS ---
current_dir = Path(__file__).parent if "__file__" in locals() else Path.cwd()
css_file = current_dir / "styles" / "main.css"
resume_file = current_dir / "assets" / "my_resume.pdf"
profile_pic = current_dir / "assets" / "profile-pic.png"


# --- GENERAL SETTINGS ---
PAGE_TITLE = "Digital CV | John Doe"
PAGE_ICON = ":wave:"
NAME = "SUDHANSHU"
DESCRIPTION = """
Aspiring Data Scientist | 18-Year-Old Data Enthusiast | 1 Year of Hands-On Experience | Passionate about Solving Real-World Problems"
"""
EMAIL = "gusainsudhanshu43@gmail.com"
SOCIAL_MEDIA = {
    "YouTube": "https://youtube.com/",
    "LinkedIn": "https://www.linkedin.com/in/sudhanshu-gusain-34271028a/",
    "GitHub": "https://github.com/sudhanshu976",
    "Website": "https://nlpappbysudhanshu.streamlit.app/",
}
PROJECTS = {
    "πŸ† POWER-BI Dashboards - Making interactive and dynamic dashboards": "https://github.com/sudhanshu976/POWER-BI-PROJECTS",
    "πŸ† Potato Disease Classifier using CNN - Checks whether a given potato leaf is healthy , early-blight or late-blight": "https://github.com/sudhanshu976/POTATO-DISEASE-CLASSIFIER-WITH-DEPLOYMENT",
    "πŸ† Combined NLP WEB APP - This web app contains all NLP Projects I have made till date ": "https://github.com/sudhanshu976/NLP_FULL",
}




# --- LOAD CSS, PDF & PROFIL PIC ---
with open(css_file) as f:
    st.markdown("<style>{}</style>".format(f.read()), unsafe_allow_html=True)
with open(resume_file, "rb") as pdf_file:
    PDFbyte = pdf_file.read()
profile_pic = Image.open(profile_pic)


# --- HERO SECTION ---
col1, col2 = st.columns(2, gap="small")
with col1:
    st.image(profile_pic, width=230)

with col2:
    st.title(NAME)
    st.write(DESCRIPTION)
    st.download_button(
        label=" πŸ“„ Download Resume",
        data=PDFbyte,
        file_name=resume_file.name,
        mime="application/octet-stream",
    )
    st.write("πŸ“«", EMAIL)


# --- SOCIAL LINKS ---
st.write('\n')
cols = st.columns(len(SOCIAL_MEDIA))
for index, (platform, link) in enumerate(SOCIAL_MEDIA.items()):
    cols[index].write(f"[{platform}]({link})")


# --- EXPERIENCE & QUALIFICATIONS ---
st.write('\n')
st.subheader("Experience & Qulifications")
st.write(
    """
- βœ”οΈ 1 Year expereince of performing various Data Science and NLP tasks
- βœ”οΈ Strong hands on experience and knowledge in Python , ML , DL and NLP
- βœ”οΈ Good understanding of statistical principles and their respective applications
- βœ”οΈ Excellent team-player and displaying strong sense of initiative on tasks
"""
)


# --- SKILLS ---
st.write('\n')
st.subheader("Hard Skills")
st.write(
    """
- πŸ‘©β€πŸ’» Programming: Python (Scikit-learn, Pandas , Numpy , Pytorch , Tensorflow)
- πŸ“Š Data Visulization: PowerBi, Matplotlib , Seaborn
- πŸ“š Modeling: Supervised and Unsupervised ML algorithms , ANN , RNN , CNN
- πŸ—„οΈ Databases: MySQL
- πŸ—„οΈ WEB DEPLOYMENT: FLASK , Streamlit , Heroku
"""
)


# --- WORK HISTORY ---
st.write('\n')
st.subheader("Work History")
st.write("---")

# --- JOB 1
st.write("🚧", "**Freelancer Data Scientist and NLP Engineer**")
st.write("05/2023 - Present")
st.write(
    """
- β–Ί Used PowerBI for creating interactive dashboards 
- β–Ί Solved many ML , DL and NLP problems in various fields like medical , agriculture , etc
- β–Ί Well versed in solving real life problems especially using NLP
"""
)

# --- Projects & Accomplishments ---
st.write('\n')
st.subheader("Projects & Accomplishments")
st.write("---")
for project, link in PROJECTS.items():
    st.write(f"[{project}]({link})")