Spaces:
Running
Running
File size: 4,159 Bytes
d1568e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# 本文禁止转载!
本文地址:[https://blog.csdn.net/weixin_44936889/article/details/112002152](https://blog.csdn.net/weixin_44936889/article/details/112002152)
# 项目简介:
使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。
代码地址(欢迎star):
[https://github.com/Sharpiless/yolov5-deepsort/](https://github.com/Sharpiless/yolov5-deepsort/)
最终效果:
![在这里插入图片描述](https://github.com/Sharpiless/Yolov5-Deepsort/blob/main/image.png)
# YOLOv5检测器:
```python
class Detector(baseDet):
def __init__(self):
super(Detector, self).__init__()
self.init_model()
self.build_config()
def init_model(self):
self.weights = 'weights/yolov5m.pt'
self.device = '0' if torch.cuda.is_available() else 'cpu'
self.device = select_device(self.device)
model = attempt_load(self.weights, map_location=self.device)
model.to(self.device).eval()
model.half()
# torch.save(model, 'test.pt')
self.m = model
self.names = model.module.names if hasattr(
model, 'module') else model.names
def preprocess(self, img):
img0 = img.copy()
img = letterbox(img, new_shape=self.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
img = img.half() # 半精度
img /= 255.0 # 图像归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img0, img
def detect(self, im):
im0, img = self.preprocess(im)
pred = self.m(img, augment=False)[0]
pred = pred.float()
pred = non_max_suppression(pred, self.threshold, 0.4)
pred_boxes = []
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_coords(
img.shape[2:], det[:, :4], im0.shape).round()
for *x, conf, cls_id in det:
lbl = self.names[int(cls_id)]
if not lbl in ['person', 'car', 'truck']:
continue
x1, y1 = int(x[0]), int(x[1])
x2, y2 = int(x[2]), int(x[3])
pred_boxes.append(
(x1, y1, x2, y2, lbl, conf))
return im, pred_boxes
```
调用 self.detect 方法返回图像和预测结果
# DeepSort追踪器:
```python
deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
use_cuda=True)
```
调用 self.update 方法更新追踪结果
# 运行demo:
```bash
python demo.py
```
# 训练自己的模型:
参考我的另一篇博客:
[【小白CV】手把手教你用YOLOv5训练自己的数据集(从Windows环境配置到模型部署)](https://blog.csdn.net/weixin_44936889/article/details/110661862)
训练好后放到 weights 文件夹下
# 调用接口:
## 创建检测器:
```python
from AIDetector_pytorch import Detector
det = Detector()
```
## 调用检测接口:
```python
result = det.feedCap(im)
```
其中 im 为 BGR 图像
返回的 result 是字典,result['frame'] 返回可视化后的图像
# 联系作者:
> B站:[https://space.bilibili.com/470550823](https://space.bilibili.com/470550823)
> CSDN:[https://blog.csdn.net/weixin_44936889](https://blog.csdn.net/weixin_44936889)
> AI Studio:[https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156](https://aistudio.baidu.com/aistudio/personalcenter/thirdview/67156)
> Github:[https://github.com/Sharpiless](https://github.com/Sharpiless)
遵循 GNU General Public License v3.0 协议,标明目标检测部分来源:https://github.com/ultralytics/yolov5/
|