File size: 7,939 Bytes
f498ac0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import sys
import yaml
import torch
import random
import numpy as np
import gradio as gr
from pathlib import Path
import tempfile
import shutil

# Add the current directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))

# Add packages directory to Python path
packages_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'packages')
if os.path.exists(packages_dir):
    sys.path.append(packages_dir)

try:
    from loop import loop
except ImportError as e:
    print(f"Error importing loop: {e}")
    print("Make sure all dependencies are installed correctly")
    sys.exit(1)

# Global variables for configuration
DEFAULT_CONFIG = {
    'output_path': './outputs',
    'gpu': 0,
    'seed': 99,
    'clip_model': 'ViT-B/32',
    'consistency_clip_model': 'ViT-B/32',
    'consistency_vit_stride': 8,
    'consistency_vit_layer': 11,
    'mesh': './meshes/longsleeve.obj',
    'target_mesh': './meshes_target/jacket_sdf_new.obj',
    'retriangulate': 0,
    'bsdf': 'diffuse',
    'lr': 0.0025,
    'epochs': 1800,
    'clip_weight': 2.5,
    'delta_clip_weight': 5,
    'vgg_weight': 0.0,
    'face_weight': 0,
    'regularize_jacobians_weight': 0.15,
    'consistency_loss_weight': 0,
    'consistency_elev_filter': 30,
    'consistency_azim_filter': 20,
    'batch_size': 24,
    'train_res': 512,
    'resize_method': 'cubic',
    'fov_min': 30.0,
    'fov_max': 90.0,
    'dist_min': 2.5,
    'dist_max': 3.5,
    'light_power': 5.0,
    'elev_alpha': 1.0,
    'elev_beta': 5.0,
    'elev_max': 60.0,
    'azim_min': 0.0,
    'azim_max': 360.0,
    'aug_loc': 1,
    'aug_light': 1,
    'aug_bkg': 0,
    'adapt_dist': 1,
    'log_interval': 5,
    'log_interval_im': 150,
    'log_elev': 0,
    'log_fov': 60.0,
    'log_dist': 3.0,
    'log_res': 512,
    'log_light_power': 3.0
}

def process_garment(text_prompt, base_text_prompt, epochs, learning_rate, clip_weight, delta_clip_weight, progress=gr.Progress()):
    """
    Main function to process garment generation
    """
    try:
        # Create a temporary output directory
        with tempfile.TemporaryDirectory() as temp_dir:
            # Update configuration
            config = DEFAULT_CONFIG.copy()
            config.update({
                'output_path': temp_dir,
                'text_prompt': text_prompt,
                'base_text_prompt': base_text_prompt,
                'epochs': int(epochs),
                'lr': float(learning_rate),
                'clip_weight': float(clip_weight),
                'delta_clip_weight': float(delta_clip_weight),
                'gpu': 0  # Use first GPU
            })
            
            # Set random seeds
            random.seed(config['seed'])
            os.environ['PYTHONHASHSEED'] = str(config['seed'])
            np.random.seed(config['seed'])
            torch.manual_seed(config['seed'])
            torch.cuda.manual_seed(config['seed'])
            torch.backends.cudnn.deterministic = True
            
            progress(0.1, desc="Initializing...")
            
            # Run the main processing loop
            loop(config)
            
            progress(0.9, desc="Processing complete, preparing output...")
            
            # Look for output files
            output_files = []
            for file_path in Path(temp_dir).rglob("*"):
                if file_path.is_file() and file_path.suffix.lower() in ['.obj', '.png', '.jpg', '.jpeg', '.gif', '.mp4']:
                    output_files.append(str(file_path))
            
            if output_files:
                return output_files[0] if len(output_files) == 1 else output_files
            else:
                return "Processing completed but no output files found."
                
    except Exception as e:
        return f"Error during processing: {str(e)}"

def create_interface():
    """
    Create the Gradio interface
    """
    with gr.Blocks(title="Garment3DGen - 3D Garment Stylization", theme=gr.themes.Soft()) as interface:
        gr.Markdown("""
        # Garment3DGen: 3D Garment Stylization and Texture Generation
        
        This tool allows you to stylize 3D garments using text prompts. Upload a 3D mesh and describe the desired style to generate a new 3D garment.
        
        ## How to use:
        1. Enter a text prompt describing the target style (e.g., "leather jacket with studs")
        2. Enter a base text prompt describing the input mesh (e.g., "simple t-shirt")
        3. Adjust the parameters as needed
        4. Click "Generate" to start the process
        
        **Note:** Processing may take several minutes depending on the number of epochs.
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("### Input Parameters")
                
                text_prompt = gr.Textbox(
                    label="Target Text Prompt",
                    placeholder="e.g., leather jacket with studs, denim jacket with patches",
                    value="leather jacket with studs"
                )
                
                base_text_prompt = gr.Textbox(
                    label="Base Text Prompt",
                    placeholder="e.g., simple t-shirt, basic long sleeve shirt",
                    value="simple t-shirt"
                )
                
                epochs = gr.Slider(
                    minimum=100,
                    maximum=3000,
                    value=1800,
                    step=100,
                    label="Number of Epochs",
                    info="More epochs = better quality but longer processing time"
                )
                
                learning_rate = gr.Slider(
                    minimum=0.0001,
                    maximum=0.01,
                    value=0.0025,
                    step=0.0001,
                    label="Learning Rate"
                )
                
                clip_weight = gr.Slider(
                    minimum=0.1,
                    maximum=10.0,
                    value=2.5,
                    step=0.1,
                    label="CLIP Weight"
                )
                
                delta_clip_weight = gr.Slider(
                    minimum=0.1,
                    maximum=20.0,
                    value=5.0,
                    step=0.1,
                    label="Delta CLIP Weight"
                )
                
                generate_btn = gr.Button("Generate 3D Garment", variant="primary")
            
            with gr.Column(scale=1):
                gr.Markdown("### Output")
                output = gr.File(label="Generated 3D Garment")
                status = gr.Textbox(label="Status", interactive=False)
        
        # Connect the button to the processing function
        generate_btn.click(
            fn=process_garment,
            inputs=[text_prompt, base_text_prompt, epochs, learning_rate, clip_weight, delta_clip_weight],
            outputs=[output]
        )
        
        gr.Markdown("""
        ## Tips for better results:
        - Be specific in your text prompts
        - Use descriptive terms for materials, colors, and styles
        - The base text prompt should accurately describe your input mesh
        - Higher epoch counts generally produce better results but take longer
        - Experiment with different CLIP weights for different effects
        
        ## Technical Details:
        This tool uses Neural Jacobian Fields and CLIP embeddings to deform and stylize 3D garment meshes.
        The process involves optimizing the mesh geometry and texture to match the target text description.
        """)
    
    return interface

if __name__ == "__main__":
    # Create and launch the interface
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )