Spaces:
Sleeping
Sleeping
File size: 9,116 Bytes
7bc29af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from concurrent import futures
from fnmatch import fnmatch
from functools import partial
import io
import math
from multiprocessing import cpu_count
import typing as tp
import zlib
import torch
class BaseQuantizer:
@dataclass
class _QuantizedParam:
name: str
param: torch.nn.Parameter
module: torch.nn.Module
# If a Parameter is used multiple times, `other` can be used
# to share state between the different Quantizers
other: tp.Optional[tp.Any]
def __init__(self, model: torch.nn.Module, min_size: float = 0.01, float16: bool = False,
exclude: tp.Optional[tp.List[str]] = [], detect_bound: bool = True):
self.model = model
self.min_size = min_size
self.float16 = float16
self.exclude = exclude
self.detect_bound = detect_bound
self._quantized = False
self._pre_handle = self.model.register_forward_pre_hook(self._forward_pre_hook)
self._post_handle = self.model.register_forward_hook(self._forward_hook)
self._quantized_state = None
self._qparams = []
self._float16 = []
self._others = []
self._rnns = []
self._saved = []
self._find_params()
def _find_params(self):
min_params = self.min_size * 2**20 // 4
previous = {}
for module_name, module in self.model.named_modules():
if isinstance(module, torch.nn.RNNBase):
self._rnns.append(module)
for name, param in list(module.named_parameters(recurse=False)):
full_name = f"{module_name}.{name}"
matched = False
for pattern in self.exclude:
if fnmatch(full_name, pattern) or fnmatch(name, pattern):
matched = True
break
if param.numel() <= min_params or matched:
if id(param) in previous:
continue
if self.detect_bound:
previous[id(param)] = None
if self.float16:
self._float16.append(param)
else:
self._others.append(param)
else:
qparam = self._register_param(name, param, module, previous.get(id(param)))
if self.detect_bound:
previous[id(param)] = qparam
self._qparams.append(qparam)
def _register_param(self, name, param, module, other):
return self.__class__._QuantizedParam(name, param, module, other)
def _forward_pre_hook(self, module, input):
if self.model.training:
self._quantized_state = None
if self._quantized:
self.unquantize()
if self._pre_forward_train():
self._fix_rnns()
else:
self.quantize()
def _forward_hook(self, module, input, output):
if self.model.training:
if self._post_forward_train():
self._fix_rnns(flatten=False) # Hacky, next forward will flatten
def quantize(self, save=True):
"""
Immediately apply quantization to the model parameters.
If `save` is True, save a copy of the unquantized parameters, that can be
restored with `unquantize()`.
"""
if self._quantized:
return
if save:
self._saved = [qp.param.data.to('cpu', copy=True)
for qp in self._qparams if qp.other is None]
self.restore_quantized_state(self.get_quantized_state())
self._quantized = True
self._fix_rnns()
def unquantize(self):
"""
Revert a previous call to `quantize()`.
"""
if not self._quantized:
raise RuntimeError("Can only be called on a quantized model.")
if not self._saved:
raise RuntimeError("Nothing to restore.")
for qparam in self._qparams:
if qparam.other is None:
qparam.param.data[:] = self._saved.pop(0)
assert len(self._saved) == 0
self._quantized = False
self._fix_rnns()
def _pre_forward_train(self) -> bool:
"""
Called once before each forward for continuous quantization.
Should return True if parameters were changed.
"""
return False
def _post_forward_train(self) -> bool:
"""
Called once after each forward (to restore state for instance).
Should return True if parameters were changed.
"""
return False
def _fix_rnns(self, flatten=True):
"""
To be called after quantization happened to fix RNNs.
"""
for rnn in self._rnns:
rnn._flat_weights = [
(lambda wn: getattr(rnn, wn) if hasattr(rnn, wn) else None)(wn)
for wn in rnn._flat_weights_names]
if flatten:
rnn.flatten_parameters()
def get_quantized_state(self):
"""
Returns sufficient quantized information to rebuild the model state.
..Note::
To achieve maximum compression, you should compress this with
gzip or other, as quantized weights are not optimally coded!
"""
if self._quantized_state is None:
self._quantized_state = self._get_quantized_state()
return self._quantized_state
def _get_quantized_state(self):
"""
Actual implementation for `get_quantized_state`.
"""
float16_params = []
for p in self._float16:
q = p.data.half()
float16_params.append(q)
return {
"quantized": [self._quantize_param(qparam) for qparam in self._qparams
if qparam.other is None],
"float16": float16_params,
"others": [p.data.clone() for p in self._others],
}
def _quantize_param(self, qparam: _QuantizedParam) -> tp.Any:
"""
To be overriden.
"""
raise NotImplementedError()
def _unquantize_param(self, qparam: _QuantizedParam, quantized: tp.Any) -> torch.Tensor:
"""
To be overriden.
"""
raise NotImplementedError()
def restore_quantized_state(self, state) -> None:
"""
Restore the state of the model from the quantized state.
"""
for p, q in zip(self._float16, state["float16"]):
p.data[:] = q.to(p)
for p, q in zip(self._others, state["others"]):
p.data[:] = q
remaining = list(state["quantized"])
for qparam in self._qparams:
if qparam.other is not None:
# Only unquantize first appearance of nn.Parameter.
continue
quantized = remaining.pop(0)
qparam.param.data[:] = self._unquantize_param(qparam, quantized)
self._fix_rnns()
def detach(self) -> None:
"""
Detach from the model, removes hooks and anything else.
"""
self._pre_handle.remove()
self._post_handle.remove()
def model_size(self) -> torch.Tensor:
"""
Returns an estimate of the quantized model size.
"""
total = torch.tensor(0.)
for p in self._float16:
total += 16 * p.numel()
for p in self._others:
total += 32 * p.numel()
return total / 2**20 / 8 # bits to MegaBytes
def true_model_size(self) -> float:
"""
Return the true quantized model size, in MB, without extra
compression.
"""
return self.model_size().item()
def compressed_model_size(self, compress_level=-1, num_workers=8) -> float:
"""
Return the compressed quantized model size, in MB.
Args:
compress_level (int): compression level used with zlib,
see `zlib.compress` for details.
num_workers (int): will split the final big byte representation in that
many chunks processed in parallels.
"""
out = io.BytesIO()
torch.save(self.get_quantized_state(), out)
ms = _parallel_compress_len(out.getvalue(), compress_level, num_workers)
return ms / 2 ** 20
def _compress_len(data, compress_level):
return len(zlib.compress(data, level=compress_level))
def _parallel_compress_len(data, compress_level, num_workers):
num_workers = min(cpu_count(), num_workers)
chunk_size = int(math.ceil(len(data) / num_workers))
chunks = [data[offset:offset + chunk_size] for offset in range(0, len(data), chunk_size)]
with futures.ProcessPoolExecutor(num_workers) as pool:
return sum(pool.map(partial(_compress_len, compress_level=compress_level), chunks))
|