File size: 8,914 Bytes
5ae5e10
 
 
365d200
 
5ae5e10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
from typing import Iterator

import gradio as gr
import torch

from model import get_input_token_length, run

DEFAULT_SYSTEM_PROMPT = """\
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000

DESCRIPTION = """
# Llama-2 13B Chat

This Space demonstrates model [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta, a Llama 2 model with 13B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).

πŸ”Ž For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).

πŸ”¨ Looking for an even more powerful model? Check out the large [**70B** model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
πŸ‡ For a smaller model that you can run on many GPUs, check our [7B model demo](https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat).

"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += '\n<p>Running on CPU πŸ₯Ά This demo does not work on CPU.</p>'


def clear_and_save_textbox(message: str) -> tuple[str, str]:
    return '', message


def display_input(message: str,
                  history: list[tuple[str, str]]) -> list[tuple[str, str]]:
    history.append((message, ''))
    return history


def delete_prev_fn(
        history: list[tuple[str, str]]) -> tuple[list[tuple[str, str]], str]:
    try:
        message, _ = history.pop()
    except IndexError:
        message = ''
    return history, message or ''


def generate(
    message: str,
    history_with_input: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int,
    temperature: float,
    top_p: float,
    top_k: int,
) -> Iterator[list[tuple[str, str]]]:
    if max_new_tokens > MAX_MAX_NEW_TOKENS:
        raise ValueError

    history = history_with_input[:-1]
    generator = run(message, history, system_prompt, max_new_tokens, temperature, top_p, top_k)
    try:
        first_response = next(generator)
        yield history + [(message, first_response)]
    except StopIteration:
        yield history + [(message, '')]
    for response in generator:
        yield history + [(message, response)]


def process_example(message: str) -> tuple[str, list[tuple[str, str]]]:
    generator = generate(message, [], DEFAULT_SYSTEM_PROMPT, 1024, 1, 0.95, 50)
    for x in generator:
        pass
    return '', x


def check_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> None:
    input_token_length = get_input_token_length(message, chat_history, system_prompt)
    if input_token_length > MAX_INPUT_TOKEN_LENGTH:
        raise gr.Error(f'The accumulated input is too long ({input_token_length} > {MAX_INPUT_TOKEN_LENGTH}). Clear your chat history and try again.')


with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value='Duplicate Space for private use',
                       elem_id='duplicate-button')

    with gr.Group():
        chatbot = gr.Chatbot(label='Chatbot')
        with gr.Row():
            textbox = gr.Textbox(
                container=False,
                show_label=False,
                placeholder='Type a message...',
                scale=10,
            )
            submit_button = gr.Button('Submit',
                                      variant='primary',
                                      scale=1,
                                      min_width=0)
    with gr.Row():
        retry_button = gr.Button('πŸ”„  Retry', variant='secondary')
        undo_button = gr.Button('↩️ Undo', variant='secondary')
        clear_button = gr.Button('πŸ—‘οΈ  Clear', variant='secondary')

    saved_input = gr.State()

    with gr.Accordion(label='Advanced options', open=False):
        system_prompt = gr.Textbox(label='System prompt',
                                   value=DEFAULT_SYSTEM_PROMPT,
                                   lines=6)
        max_new_tokens = gr.Slider(
            label='Max new tokens',
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        )
        temperature = gr.Slider(
            label='Temperature',
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=1.0,
        )
        top_p = gr.Slider(
            label='Top-p (nucleus sampling)',
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=0.95,
        )
        top_k = gr.Slider(
            label='Top-k',
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        )

    gr.Examples(
        examples=[
            'Hello there! How are you doing?',
            'Can you explain briefly to me what is the Python programming language?',
            'Explain the plot of Cinderella in a sentence.',
            'How many hours does it take a man to eat a Helicopter?',
            "Write a 100-word article on 'Benefits of Open-Source in AI research'",
        ],
        inputs=textbox,
        outputs=[textbox, chatbot],
        fn=process_example,
        cache_examples=True,
    )

    gr.Markdown(LICENSE)

    textbox.submit(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    button_event_preprocess = submit_button.click(
        fn=clear_and_save_textbox,
        inputs=textbox,
        outputs=[textbox, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=check_input_token_length,
        inputs=[saved_input, chatbot, system_prompt],
        api_name=False,
        queue=False,
    ).success(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    retry_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=display_input,
        inputs=[saved_input, chatbot],
        outputs=chatbot,
        api_name=False,
        queue=False,
    ).then(
        fn=generate,
        inputs=[
            saved_input,
            chatbot,
            system_prompt,
            max_new_tokens,
            temperature,
            top_p,
            top_k,
        ],
        outputs=chatbot,
        api_name=False,
    )

    undo_button.click(
        fn=delete_prev_fn,
        inputs=chatbot,
        outputs=[chatbot, saved_input],
        api_name=False,
        queue=False,
    ).then(
        fn=lambda x: x,
        inputs=[saved_input],
        outputs=textbox,
        api_name=False,
        queue=False,
    )

    clear_button.click(
        fn=lambda: ([], ''),
        outputs=[chatbot, saved_input],
        queue=False,
        api_name=False,
    )

demo.queue(max_size=20).launch()