File size: 9,371 Bytes
36bd59a
7fd6367
 
 
 
 
 
 
 
 
 
 
 
 
36bd59a
7fd6367
 
 
36bd59a
7fd6367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import gradio as gr
import torch
import json
from PIL import Image, ImageDraw
import numpy as np
from transformers import (
    LayoutLMv3FeatureExtractor, 
    LayoutLMv3Tokenizer, 
    LayoutLMv3ForTokenClassification, 
    LayoutLMv3Config
)
import pytesseract
from datasets import load_dataset
import os

# Set up device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# Constants
NUM_LABELS = 5  # 0: regular text, 1: title, 2: H1, 3: H2, 4: H3

def create_student_model(num_labels=5):
    """Create a distilled version of LayoutLMv3"""
    student_config = LayoutLMv3Config(
        hidden_size=384,           # vs 768 original
        num_attention_heads=6,     # vs 12 original  
        intermediate_size=1536,    # vs 3072 original
        num_hidden_layers=8,       # vs 12 original
        num_labels=num_labels
    )
    
    model = LayoutLMv3ForTokenClassification(student_config)
    return model

def load_model():
    """Load the model and components"""
    print("Creating model components...")
    
    # Create feature extractor
    feature_extractor = LayoutLMv3FeatureExtractor(
        do_resize=True,
        size=224,
        apply_ocr=False,
        image_mean=[0.5, 0.5, 0.5],
        image_std=[0.5, 0.5, 0.5]
    )
    
    # Create tokenizer
    tokenizer = LayoutLMv3Tokenizer.from_pretrained("microsoft/layoutlmv3-base")
    
    # Create student model
    model = create_student_model(num_labels=NUM_LABELS)
    model.to(device)
    
    # For demo purposes, we'll use random weights
    # In production, you would load your trained weights here
    print("Model components created successfully!")
    
    return model, feature_extractor, tokenizer

def perform_ocr(image):
    """Extract text and bounding boxes from image using OCR"""
    try:
        # Convert PIL image to numpy array
        img_array = np.array(image)
        
        # Get OCR data
        ocr_data = pytesseract.image_to_data(img_array, output_type=pytesseract.Output.DICT)
        
        words = []
        boxes = []
        confidences = ocr_data['conf']
        
        for i in range(len(ocr_data['text'])):
            if int(confidences[i]) > 30:  # Filter low confidence
                word = ocr_data['text'][i].strip()
                if word:  # Only add non-empty words
                    x, y, w, h = (ocr_data['left'][i], ocr_data['top'][i], 
                                ocr_data['width'][i], ocr_data['height'][i])
                    
                    # Normalize coordinates
                    img_width, img_height = image.size
                    normalized_box = [
                        x / img_width,
                        y / img_height,
                        (x + w) / img_width,
                        (y + h) / img_height
                    ]
                    
                    words.append(word)
                    boxes.append(normalized_box)
        
        return words, boxes
        
    except Exception as e:
        print(f"OCR failed: {e}")
        return ["sample", "text"], [[0, 0, 0.5, 0.1], [0.5, 0, 1.0, 0.1]]

def extract_headings_from_image(image, model, feature_extractor, tokenizer):
    """Extract headings from uploaded image using the model"""
    try:
        # Perform OCR to get words and boxes
        words, boxes = perform_ocr(image)
        
        if not words:
            return {"ERROR": ["No text found in image"]}
        
        # Prepare inputs for the model
        # Process image
        pixel_values = feature_extractor(image, return_tensors="pt")["pixel_values"]
        pixel_values = pixel_values.to(device)
        
        # Process text and boxes (limit to first 512 tokens)
        max_words = min(len(words), 500)  # Leave room for special tokens
        words = words[:max_words]
        boxes = boxes[:max_words]
        
        # Convert boxes to the format expected by LayoutLMv3 (0-1000 scale)
        scaled_boxes = []
        for box in boxes:
            scaled_box = [
                int(box[0] * 1000),
                int(box[1] * 1000),
                int(box[2] * 1000),
                int(box[3] * 1000)
            ]
            scaled_boxes.append(scaled_box)
        
        # Tokenize
        encoding = tokenizer(
            words,
            boxes=scaled_boxes,
            max_length=512,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        )
        
        # Move to device
        input_ids = encoding["input_ids"].to(device)
        attention_mask = encoding["attention_mask"].to(device)
        bbox = encoding["bbox"].to(device)
        
        # Run inference
        with torch.no_grad():
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                bbox=bbox,
                pixel_values=pixel_values
            )
        
        # Get predictions
        predictions = torch.argmax(outputs.logits, dim=-1).cpu().numpy()[0]
        
        # Map predictions back to words
        word_ids = encoding.word_ids(batch_index=0)
        
        # Extract headings by label
        headings = {"TITLE": [], "H1": [], "H2": [], "H3": []}
        label_map = {0: "TEXT", 1: "TITLE", 2: "H1", 3: "H2", 4: "H3"}
        
        current_heading = {"text": "", "level": None}
        
        for i, (word_id, pred) in enumerate(zip(word_ids, predictions)):
            if word_id is not None and word_id < len(words):
                predicted_label = label_map.get(pred, "TEXT")
                
                if predicted_label != "TEXT":
                    if current_heading["level"] == predicted_label:
                        # Continue building current heading
                        current_heading["text"] += " " + words[word_id]
                    else:
                        # Save previous heading if it exists
                        if current_heading["text"] and current_heading["level"]:
                            headings[current_heading["level"]].append(current_heading["text"].strip())
                        
                        # Start new heading
                        current_heading = {"text": words[word_id], "level": predicted_label}
                else:
                    # Save current heading when we hit regular text
                    if current_heading["text"] and current_heading["level"]:
                        headings[current_heading["level"]].append(current_heading["text"].strip())
                        current_heading = {"text": "", "level": None}
        
        # Save final heading
        if current_heading["text"] and current_heading["level"]:
            headings[current_heading["level"]].append(current_heading["text"].strip())
        
        # Remove empty lists and return
        headings = {k: v for k, v in headings.items() if v}
        
        if not headings:
            return {"INFO": ["No headings detected - this might be a model training issue"]}
        
        return headings
        
    except Exception as e:
        return {"ERROR": [f"Processing failed: {str(e)}"]}

# Load model (this will happen when the Space starts)
print("Loading model...")
model, feature_extractor, tokenizer = load_model()
print("Model loaded successfully!")

def process_document(image):
    """Main function to process uploaded document"""
    if image is None:
        return "Please upload an image"
    
    print("Processing uploaded image...")
    
    # Extract headings
    headings = extract_headings_from_image(image, model, feature_extractor, tokenizer)
    
    # Format output
    result = "## Extracted Document Structure:\n\n"
    
    if "ERROR" in headings:
        result += f"❌ **Error:** {headings['ERROR'][0]}\n"
        return result
    
    if "INFO" in headings:
        result += f"ℹ️ **Info:** {headings['INFO'][0]}\n"
        return result
    
    # Display found headings
    for level, texts in headings.items():
        result += f"**{level}:**\n"
        for text in texts:
            if level == "TITLE":
                result += f"# {text}\n"
            elif level == "H1":
                result += f"## {text}\n"
            elif level == "H2":
                result += f"### {text}\n"
            elif level == "H3":
                result += f"#### {text}\n"
        result += "\n"
    
    if not any(headings.values()):
        result += "⚠️ No headings were detected in this image.\n\n"
        result += "**Possible reasons:**\n"
        result += "- The model needs training on actual data\n"
        result += "- The image quality is too low\n"
        result += "- The document doesn't contain clear headings\n"
    
    return result

# Create Gradio interface
demo = gr.Interface(
    fn=process_document,
    inputs=gr.Image(type="pil", label="Upload Document Image"),
    outputs=gr.Markdown(label="Extracted Headings"),
    title="📄 PDF Heading Extractor",
    description="""
    Upload an image of a document to extract its heading hierarchy.
    
    **Note:** This is a demo version using an untrained model. 
    The actual model would need to be trained on DocLayNet data for accurate results.
    """,
    examples=None,
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch()