File size: 8,027 Bytes
ec4a3d7
ffa2e5d
 
 
eaf77a6
ec4a3d7
eaf77a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5d0fb
ffa2e5d
eaf77a6
 
 
ffa2e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4a3d7
ffa2e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4a3d7
 
ffa2e5d
ec4a3d7
 
 
 
ffa2e5d
 
 
 
 
 
 
ec4a3d7
 
 
eaf77a6
 
 
 
 
 
ec4a3d7
eaf77a6
ec4a3d7
 
 
 
 
 
 
 
 
 
eaf77a6
ec4a3d7
eaf77a6
ec4a3d7
 
eaf77a6
 
 
 
 
 
 
ec4a3d7
 
 
ffa2e5d
ec4a3d7
 
ffa2e5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec4a3d7
ffa2e5d
 
 
ec4a3d7
 
 
 
 
ffa2e5d
 
ec4a3d7
 
eaf77a6
ec4a3d7
 
ffa2e5d
 
eaf77a6
 
 
ec4a3d7
 
ffa2e5d
ec4a3d7
 
 
 
 
eaf77a6
ec4a3d7
 
ffa2e5d
ec4a3d7
 
ffa2e5d
ec4a3d7
 
 
 
 
 
 
 
 
 
 
ffa2e5d
ec4a3d7
 
 
 
 
eaf77a6
ffa2e5d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
import cv2
import tempfile
from ultralytics import YOLOv10
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download


def download_models(model_id):
    hf_hub_download("kadirnar/Yolov10", filename=f"{model_id}", local_dir=f"./")
    return f"./{model_id}"
    
box_annotator = sv.BoxAnnotator()
category_dict = {
    0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
    6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
    11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
    16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
    22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
    27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
    32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
    36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
    40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
    46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
    51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
    56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
    61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
    67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
    72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
    77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}


@spaces.GPU
def yolov10_inference(image, video, model_id, image_size, conf_threshold, iou_threshold):
    model_path = download_models(model_id)
    model = YOLOv10(model_path)
    
    if image:
        results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
        detections = sv.Detections.from_ultralytics(results)
        
        labels = [
            f"{category_dict[class_id]} {confidence:.2f}"
            for class_id, confidence in zip(detections.class_id, detections.confidence)
        ]
        annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
        return annotated_image[:, :, ::-1], None
    else:
        video_path = tempfile.mktemp(suffix=".webm")
        with open(video_path, "wb") as f:
            with open(video, "rb") as g:
                f.write(g.read())

        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

        output_video_path = tempfile.mktemp(suffix=".webm")
        out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break

            results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
            detections = sv.Detections.from_ultralytics(results)
            
            labels = [
                f"{category_dict[class_id]} {confidence:.2f}"
                for class_id, confidence in zip(detections.class_id, detections.confidence)
            ]
            annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
            out.write(annotated_frame)

        cap.release()
        out.release()

        return None, output_video_path


def yolov10_inference_for_examples(image, model_id, image_size, conf_threshold, iou_threshold):
    annotated_image, _ = yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
    return annotated_image


def app():
    with gr.Blocks():
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", label="Image", visible=True)
                video = gr.Video(label="Video", visible=False)
                input_type = gr.Radio(
                    choices=["Image", "Video"],
                    value="Image",
                    label="Input Type",
                )
                model_id = gr.Dropdown(
                    label="Model",
                    choices=[
                        "yolov10n.pt",
                        "yolov10s.pt",
                        "yolov10m.pt",
                        "yolov10b.pt",
                        "yolov10l.pt",
                        "yolov10x.pt",
                    ],
                    value="yolov10m.pt",
                )
                image_size = gr.Slider(
                    label="Image Size",
                    minimum=320,
                    maximum=1280,
                    step=32,
                    value=640,
                )
                conf_threshold = gr.Slider(
                    label="Confidence Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.25,
                )
                iou_threshold = gr.Slider(
                    label="IoU Threshold",
                    minimum=0.1,
                    maximum=1.0,
                    step=0.1,
                    value=0.45,
                )
                yolov10_infer = gr.Button(value="Detect Objects")

            with gr.Column():
                output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
                output_video = gr.Video(label="Annotated Video", visible=False)

        def update_visibility(input_type):
            image_visibility = input_type == "Image"
            return (
                gr.update(visible=image_visibility),
                gr.update(visible=not image_visibility),
                gr.update(visible=image_visibility),
                gr.update(visible=not image_visibility),
            )

        input_type.change(
            fn=update_visibility,
            inputs=[input_type],
            outputs=[image, video, output_image, output_video],
        )

        def run_inference(image, video, model_id, image_size, conf_threshold, iou_threshold, input_type):
            if input_type == "Image":
                return yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
            else:
                return yolov10_inference(None, video, model_id, image_size, conf_threshold, iou_threshold)

        yolov10_infer.click(
            fn=run_inference,
            inputs=[image, video, model_id, image_size, conf_threshold, iou_threshold, input_type],
            outputs=[output_image, output_video],
        )

        gr.Examples(
            examples=[
                [
                    "ultralytics/assets/bus.jpg",
                    "yolov10s.pt",
                    640,
                    0.25,
                    0.45,
                ],
                [
                    "ultralytics/assets/zidane.jpg",
                    "yolov10s.pt",
                    640,
                    0.25,
                    0.45,
                ],
            ],
            fn=yolov10_inference_for_examples,
            inputs=[
                image,
                model_id,
                image_size,
                conf_threshold,
                iou_threshold,
            ],
            outputs=[output_image],
            cache_examples='lazy',
        )


gradio_app = gr.Blocks()
with gradio_app:
    gr.HTML(
        """
    <h1 style='text-align: center'>
    YOLOv10: Real-Time End-to-End Object Detection
    </h1>
    """)
    gr.HTML(
        """
        <h3 style='text-align: center'>
        <a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
        </h3>
        """)
    with gr.Row():
        with gr.Column():
            app()

if __name__ == '__main__':
    gradio_app.launch()