Steveeeeeeen's picture
Steveeeeeeen HF Staff
add model
7e6946d
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HIFI-GAN"""
from typing import Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.signal import get_window
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm
try:
from torch.nn.utils.parametrizations import weight_norm
except ImportError:
from torch.nn.utils import weight_norm # noqa
from flashcosyvoice.modules.hifigan_components.layers import (
ResBlock, SourceModuleHnNSF, SourceModuleHnNSF2, init_weights)
class ConvRNNF0Predictor(nn.Module):
def __init__(self,
num_class: int = 1,
in_channels: int = 80,
cond_channels: int = 512
):
super().__init__()
self.num_class = num_class
self.condnet = nn.Sequential(
weight_norm( # noqa
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
weight_norm( # noqa
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
),
nn.ELU(),
)
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.condnet(x)
x = x.transpose(1, 2)
return torch.abs(self.classifier(x).squeeze(-1))
class HiFTGenerator(nn.Module):
"""
HiFTNet Generator: Neural Source Filter + ISTFTNet
https://arxiv.org/abs/2309.09493
"""
def __init__(
self,
in_channels: int = 80,
base_channels: int = 512,
nb_harmonics: int = 8,
sampling_rate: int = 24000,
nsf_alpha: float = 0.1,
nsf_sigma: float = 0.003,
nsf_voiced_threshold: float = 10,
upsample_rates: List[int] = [8, 5, 3], # noqa
upsample_kernel_sizes: List[int] = [16, 11, 7], # noqa
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4}, # noqa
resblock_kernel_sizes: List[int] = [3, 7, 11], # noqa
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa
source_resblock_kernel_sizes: List[int] = [7, 7, 11], # noqa
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa
lrelu_slope: float = 0.1,
audio_limit: float = 0.99,
f0_predictor: torch.nn.Module = None,
):
super(HiFTGenerator, self).__init__()
self.out_channels = 1
self.nb_harmonics = nb_harmonics
self.sampling_rate = sampling_rate
self.istft_params = istft_params
self.lrelu_slope = lrelu_slope
self.audio_limit = audio_limit
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
self.m_source = this_SourceModuleHnNSF(
sampling_rate=sampling_rate,
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
harmonic_num=nb_harmonics,
sine_amp=nsf_alpha,
add_noise_std=nsf_sigma,
voiced_threshod=nsf_voiced_threshold)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
self.conv_pre = weight_norm( # noqa
Conv1d(in_channels, base_channels, 7, 1, padding=3)
)
# Up
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm( # noqa
ConvTranspose1d(
base_channels // (2**i),
base_channels // (2**(i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
# Down
self.source_downs = nn.ModuleList()
self.source_resblocks = nn.ModuleList()
downsample_rates = [1] + upsample_rates[::-1][:-1]
downsample_cum_rates = np.cumprod(downsample_rates)
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
if u == 1:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
)
else:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
)
self.source_resblocks.append(
ResBlock(base_channels // (2 ** (i + 1)), k, d)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = base_channels // (2**(i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) # noqa
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = nn.ReflectionPad1d((1, 0))
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
self.f0_predictor = ConvRNNF0Predictor() if f0_predictor is None else f0_predictor
def remove_weight_norm(self):
print('Removing weight norm...')
for up in self.ups:
remove_weight_norm(up)
for resblock in self.resblocks:
resblock.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
self.m_source.remove_weight_norm()
for source_down in self.source_downs:
remove_weight_norm(source_down)
for source_resblock in self.source_resblocks:
source_resblock.remove_weight_norm()
def _stft(self, x):
spec = torch.stft(
x,
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
return_complex=True)
spec = torch.view_as_real(spec) # [B, F, TT, 2]
return spec[..., 0], spec[..., 1]
def _istft(self, magnitude, phase):
magnitude = torch.clip(magnitude, max=1e2)
real = magnitude * torch.cos(phase)
img = magnitude * torch.sin(phase)
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
return inverse_transform
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, self.lrelu_slope)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
# fusion
si = self.source_downs[i](s_stft)
si = self.source_resblocks[i](si)
x = x + si
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
x = self._istft(magnitude, phase)
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
return x
@torch.inference_mode()
def forward(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
# mel->f0
f0 = self.f0_predictor(speech_feat)
# f0->source
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
s, _, _ = self.m_source(s)
s = s.transpose(1, 2)
# use cache_source to avoid glitch
if cache_source.shape[2] != 0:
s[:, :, :cache_source.shape[2]] = cache_source
generated_speech = self.decode(x=speech_feat, s=s)
return generated_speech, s