Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""HIFI-GAN""" | |
from typing import Dict, List | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from scipy.signal import get_window | |
from torch.nn import Conv1d, ConvTranspose1d | |
from torch.nn.utils import remove_weight_norm | |
try: | |
from torch.nn.utils.parametrizations import weight_norm | |
except ImportError: | |
from torch.nn.utils import weight_norm # noqa | |
from flashcosyvoice.modules.hifigan_components.layers import ( | |
ResBlock, SourceModuleHnNSF, SourceModuleHnNSF2, init_weights) | |
class ConvRNNF0Predictor(nn.Module): | |
def __init__(self, | |
num_class: int = 1, | |
in_channels: int = 80, | |
cond_channels: int = 512 | |
): | |
super().__init__() | |
self.num_class = num_class | |
self.condnet = nn.Sequential( | |
weight_norm( # noqa | |
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1) | |
), | |
nn.ELU(), | |
weight_norm( # noqa | |
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) | |
), | |
nn.ELU(), | |
weight_norm( # noqa | |
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) | |
), | |
nn.ELU(), | |
weight_norm( # noqa | |
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) | |
), | |
nn.ELU(), | |
weight_norm( # noqa | |
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) | |
), | |
nn.ELU(), | |
) | |
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.condnet(x) | |
x = x.transpose(1, 2) | |
return torch.abs(self.classifier(x).squeeze(-1)) | |
class HiFTGenerator(nn.Module): | |
""" | |
HiFTNet Generator: Neural Source Filter + ISTFTNet | |
https://arxiv.org/abs/2309.09493 | |
""" | |
def __init__( | |
self, | |
in_channels: int = 80, | |
base_channels: int = 512, | |
nb_harmonics: int = 8, | |
sampling_rate: int = 24000, | |
nsf_alpha: float = 0.1, | |
nsf_sigma: float = 0.003, | |
nsf_voiced_threshold: float = 10, | |
upsample_rates: List[int] = [8, 5, 3], # noqa | |
upsample_kernel_sizes: List[int] = [16, 11, 7], # noqa | |
istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4}, # noqa | |
resblock_kernel_sizes: List[int] = [3, 7, 11], # noqa | |
resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa | |
source_resblock_kernel_sizes: List[int] = [7, 7, 11], # noqa | |
source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], # noqa | |
lrelu_slope: float = 0.1, | |
audio_limit: float = 0.99, | |
f0_predictor: torch.nn.Module = None, | |
): | |
super(HiFTGenerator, self).__init__() | |
self.out_channels = 1 | |
self.nb_harmonics = nb_harmonics | |
self.sampling_rate = sampling_rate | |
self.istft_params = istft_params | |
self.lrelu_slope = lrelu_slope | |
self.audio_limit = audio_limit | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation | |
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2 | |
self.m_source = this_SourceModuleHnNSF( | |
sampling_rate=sampling_rate, | |
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], | |
harmonic_num=nb_harmonics, | |
sine_amp=nsf_alpha, | |
add_noise_std=nsf_sigma, | |
voiced_threshod=nsf_voiced_threshold) | |
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"]) | |
self.conv_pre = weight_norm( # noqa | |
Conv1d(in_channels, base_channels, 7, 1, padding=3) | |
) | |
# Up | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( # noqa | |
ConvTranspose1d( | |
base_channels // (2**i), | |
base_channels // (2**(i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
# Down | |
self.source_downs = nn.ModuleList() | |
self.source_resblocks = nn.ModuleList() | |
downsample_rates = [1] + upsample_rates[::-1][:-1] | |
downsample_cum_rates = np.cumprod(downsample_rates) | |
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)): | |
if u == 1: | |
self.source_downs.append( | |
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1) | |
) | |
else: | |
self.source_downs.append( | |
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2)) | |
) | |
self.source_resblocks.append( | |
ResBlock(base_channels // (2 ** (i + 1)), k, d) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = base_channels // (2**(i + 1)) | |
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
self.resblocks.append(ResBlock(ch, k, d)) | |
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) # noqa | |
self.ups.apply(init_weights) | |
self.conv_post.apply(init_weights) | |
self.reflection_pad = nn.ReflectionPad1d((1, 0)) | |
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32)) | |
self.f0_predictor = ConvRNNF0Predictor() if f0_predictor is None else f0_predictor | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for up in self.ups: | |
remove_weight_norm(up) | |
for resblock in self.resblocks: | |
resblock.remove_weight_norm() | |
remove_weight_norm(self.conv_pre) | |
remove_weight_norm(self.conv_post) | |
self.m_source.remove_weight_norm() | |
for source_down in self.source_downs: | |
remove_weight_norm(source_down) | |
for source_resblock in self.source_resblocks: | |
source_resblock.remove_weight_norm() | |
def _stft(self, x): | |
spec = torch.stft( | |
x, | |
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device), | |
return_complex=True) | |
spec = torch.view_as_real(spec) # [B, F, TT, 2] | |
return spec[..., 0], spec[..., 1] | |
def _istft(self, magnitude, phase): | |
magnitude = torch.clip(magnitude, max=1e2) | |
real = magnitude * torch.cos(phase) | |
img = magnitude * torch.sin(phase) | |
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], | |
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device)) | |
return inverse_transform | |
def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: | |
s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) | |
x = self.conv_pre(x) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, self.lrelu_slope) | |
x = self.ups[i](x) | |
if i == self.num_upsamples - 1: | |
x = self.reflection_pad(x) | |
# fusion | |
si = self.source_downs[i](s_stft) | |
si = self.source_resblocks[i](si) | |
x = x + si | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :]) | |
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy | |
x = self._istft(magnitude, phase) | |
x = torch.clamp(x, -self.audio_limit, self.audio_limit) | |
return x | |
def forward(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: | |
# mel->f0 | |
f0 = self.f0_predictor(speech_feat) | |
# f0->source | |
s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
s, _, _ = self.m_source(s) | |
s = s.transpose(1, 2) | |
# use cache_source to avoid glitch | |
if cache_source.shape[2] != 0: | |
s[:, :, :cache_source.shape[2]] = cache_source | |
generated_speech = self.decode(x=speech_feat, s=s) | |
return generated_speech, s | |