Spaces:
Sleeping
Sleeping
File size: 1,853 Bytes
f6aef71 ba9c49b 91c6835 f6aef71 91c6835 f6aef71 91c6835 ba9c49b f6aef71 a1bb214 f6aef71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torch
from transformers import (AutoModel, AutoModelForCausalLM, AutoTokenizer,
LlamaForCausalLM, LlamaTokenizer)
title = "🤖AI HeavyMetal-ChatBot"
description = "A State-of-the-Art Large-scale Pretrained Response generation model (DialoGPT)"
examples = [["How are you?"]]
# tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large")
# model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large")
# tokenizer = LlamaTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
# model = LlamaForCausalLM.from_pretrained("hf-internal-testing/llama-tokenizer")
model = "meta-llama/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(model)
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
# theme="finlaymacklon/boxy_violet",
theme='HaleyCH/HaleyCH_Theme',
).launch() |