Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,170 Bytes
1b80e0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import os
import cv2
import sys
import torch
import argparse
from PIL import Image, ImageOps
import folder_paths
import numpy as np
from tqdm import tqdm
from torch.nn import functional as F
import _thread
from queue import Queue, Empty
from pathlib import Path
sys.path.append(os.path.join(str(Path(__file__).parent.parent),"libs","rifle"))
from model.pytorch_msssim import ssim_matlab
interpolation_temp_input_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_input")
interpolation_temp_output_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_output")
try:
os.makedirs(interpolation_temp_input_folder)
except:
pass
try:
os.makedirs(interpolation_temp_output_folder)
except:
pass
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
scale=1
torch.set_grad_enabled(False)
if torch.cuda.is_available():
torch.backends.cudnn.enabled = True
try:
from train_log.RIFE_HDv3 import Model
except:
print("Please download our model from model list")
model = Model()
if not hasattr(model, 'version'):
model.version = 0
model_folder= os.path.join(folder_paths.folder_names_and_paths["custom_nodes"][0][0],'ComfyUI-N-Nodes','libs','rifle','train_log')
output_frames = []
def clear_write_buffer(user_args, write_buffer,output_folder):
cnt = 0
while True:
item = write_buffer.get()
if item is None:
break
cv2.imwrite(os.path.join(output_folder, '{:0>7d}.png'.format(cnt)), item[:, :, ::-1])
cnt += 1
def build_read_buffer(img, read_buffer, videogen):
try:
for frame in videogen:
if not img is None:
frame = cv2.imread(os.path.join(img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
read_buffer.put(frame)
except:
pass
read_buffer.put(None)
def make_inference(I0, I1, n):
global model
if model.version >= 3.9:
res = []
for i in range(n):
res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), scale))
return res
else:
middle = model.inference(I0, I1, scale)
if n == 1:
return [middle]
first_half = make_inference(I0, middle, n=n//2)
second_half = make_inference(middle, I1, n=n//2)
if n%2:
return [*first_half, middle, *second_half]
else:
return [*first_half, *second_half]
def get_output_filename(input_file_path, output_folder, file_extension,suffix="") :
existing_files = [f for f in os.listdir(output_folder)]
max_progressive = 0
for filename in existing_files:
parts_ext = filename.split(".")
parts = parts_ext[0]
if len(parts) > 2 and parts.isdigit():
progressive = int(parts)
max_progressive = max(max_progressive, progressive)
new_progressive = max_progressive + 1
new_filename = f"{new_progressive:07d}{suffix}{file_extension}"
return os.path.join(output_folder, new_filename), new_filename
def image_preprocessing(i):
i = ImageOps.exif_transpose(i)
image = i.convert("RGB")
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
return image
_choice = ["YES", "NO"]
_range = ["Fixed", "Random"]
class FrameInterpolator:
def __init__(self):
model.load_model(model_folder, -1)
print("Loaded 3.x/4.x HD model.")
model.eval()
model.device()
self.type = "output"
@classmethod
def INPUT_TYPES(s):
#clear directory
try:
for file in os.listdir(interpolation_temp_input_folder):
os.remove(os.path.join(interpolation_temp_input_folder,file))
for file in os.listdir(interpolation_temp_output_folder):
os.remove(os.path.join(interpolation_temp_output_folder,file))
except:
pass
return {"required":
{"images": ("IMAGE", ),
"METADATA": ("STRING", {"default": "", "forceInput": True} ),
"multiplier": ("INT", {"default": 2, "min": 1, "step": 1}),
},
}
RETURN_TYPES = ()
FUNCTION = "save_video"
OUTPUT_NODE = True
CATEGORY = "N-Suite/Video"
RETURN_TYPES = ("IMAGE","STRING",)
OUTPUT_IS_LIST = (True, False, )
RETURN_NAMES = ("IMAGES","METADATA",)
FUNCTION = "interpolate"
def interpolate(self,images,multiplier,METADATA):
fps = METADATA[0]*multiplier
frame_number = METADATA[1]
video_name = METADATA[2]
for image in images:
full_input_temp_frame_folder,file = get_output_filename("", interpolation_temp_input_folder, ".png")
file_name = file
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
#file = f"frame_{counter:05}_.png"
img.save(full_input_temp_frame_folder, pnginfo=metadata, compress_level=0)
try:
file_name_number = int(file.split(".")[0])
except:
file_name_number = 0
image_list = []
if(file_name_number >= frame_number):
videogen = []
for f in os.listdir(interpolation_temp_input_folder):
if 'png' in f:
videogen.append(f)
tot_frame = len(videogen)
videogen.sort(key= lambda x:int(x[:-4]))
lastframe = cv2.imread(os.path.join(interpolation_temp_input_folder, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
videogen = videogen[1:]
h, w, _ = lastframe.shape
tmp = max(128, int(128 / scale))
ph = ((h - 1) // tmp + 1) * tmp
pw = ((w - 1) // tmp + 1) * tmp
padding = (0, pw - w, 0, ph - h)
pbar = tqdm(total=tot_frame)
write_buffer = Queue(maxsize=500)
read_buffer = Queue(maxsize=500)
_thread.start_new_thread(build_read_buffer, (interpolation_temp_input_folder, read_buffer, videogen))
_thread.start_new_thread(clear_write_buffer, (interpolation_temp_input_folder, write_buffer, interpolation_temp_output_folder))
I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = F.pad(I1, padding)
temp = None # save lastframe when processing static frame
while True:
if temp is not None:
frame = temp
temp = None
else:
frame = read_buffer.get()
if frame is None:
break
I0 = I1
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = F.pad(I1, padding)
I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
break_flag = False
if ssim > 0.996:
frame = read_buffer.get() # read a new frame
if frame is None:
break_flag = True
frame = lastframe
else:
temp = frame
I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
I1 = F.pad(I1, padding)
I1 = model.inference(I0, I1, scale)
I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
if ssim < 0.2:
output = []
for i in range(multiplier - 1):
output.append(I0)
else:
output = make_inference(I0, I1, multiplier-1)
write_buffer.put(lastframe)
for mid in output:
mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
write_buffer.put(mid[:h, :w])
pbar.update(1)
lastframe = frame
if break_flag:
break
write_buffer.put(lastframe)
import time
while(not write_buffer.empty()):
time.sleep(0.1)
pbar.close()
METADATA = [fps, len(os.listdir(interpolation_temp_output_folder)),video_name]
images = [os.path.join(interpolation_temp_output_folder, filename) for filename in os.listdir(interpolation_temp_output_folder) if filename.endswith(".png")]
images.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
for image in images:
image_list.append(image_preprocessing(Image.open(image)))
return ( image_list,METADATA)
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"FrameInterpolator [n-suite]": FrameInterpolator,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"FrameInterpolator [n-suite]": "FrameInterpolator [π
-π
’π
€π
π
£π
]"
}
|