File size: 10,170 Bytes
1b80e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import cv2
import sys
import torch
import argparse
from PIL import Image, ImageOps
import folder_paths
import numpy as np
from tqdm import tqdm
from torch.nn import functional as F
import _thread
from queue import Queue, Empty
from pathlib import Path


sys.path.append(os.path.join(str(Path(__file__).parent.parent),"libs","rifle"))

from model.pytorch_msssim import ssim_matlab
interpolation_temp_input_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_input")
interpolation_temp_output_folder = os.path.join(folder_paths.get_temp_directory(),"n-suite","interpolation_output")

try:
    os.makedirs(interpolation_temp_input_folder)
except:
    pass


try:
    os.makedirs(interpolation_temp_output_folder)
except:
    pass

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

scale=1
torch.set_grad_enabled(False)
if torch.cuda.is_available():
    torch.backends.cudnn.enabled = True


try:
    from  train_log.RIFE_HDv3 import Model
except:
    print("Please download our model from model list")


model = Model()
if not hasattr(model, 'version'):
    model.version = 0

model_folder= os.path.join(folder_paths.folder_names_and_paths["custom_nodes"][0][0],'ComfyUI-N-Nodes','libs','rifle','train_log')






output_frames = []
def clear_write_buffer(user_args, write_buffer,output_folder):
    cnt = 0
    
    while True:
        item = write_buffer.get()
        if item is None:
            break
      
        cv2.imwrite(os.path.join(output_folder, '{:0>7d}.png'.format(cnt)), item[:, :, ::-1])
        cnt += 1 



def build_read_buffer(img, read_buffer, videogen):
    try:
        for frame in videogen:
            if not img is None:
                frame = cv2.imread(os.path.join(img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
 
            read_buffer.put(frame)
    except:
        pass
    read_buffer.put(None)

def make_inference(I0, I1, n):    
    global model
    if model.version >= 3.9:
        res = []
        for i in range(n):
            res.append(model.inference(I0, I1, (i+1) * 1. / (n+1), scale))
        return res
    else:
        middle = model.inference(I0, I1, scale)
        if n == 1:
            return [middle]
        first_half = make_inference(I0, middle, n=n//2)
        second_half = make_inference(middle, I1, n=n//2)
        if n%2:
            return [*first_half, middle, *second_half]
        else:
            return [*first_half, *second_half]


def get_output_filename(input_file_path, output_folder, file_extension,suffix="") :
    existing_files = [f for f in os.listdir(output_folder)]
    max_progressive = 0
    for filename in existing_files:
        parts_ext = filename.split(".")
        parts = parts_ext[0]

        if len(parts) > 2 and parts.isdigit():
            progressive = int(parts)
            max_progressive = max(max_progressive, progressive)


    
    new_progressive = max_progressive + 1
    new_filename = f"{new_progressive:07d}{suffix}{file_extension}"

    return os.path.join(output_folder, new_filename), new_filename

def image_preprocessing(i):
    i = ImageOps.exif_transpose(i)
    image = i.convert("RGB")
    image = np.array(image).astype(np.float32) / 255.0
    image = torch.from_numpy(image)[None,]
    return image




_choice = ["YES", "NO"]
_range = ["Fixed", "Random"]
class FrameInterpolator:
    def __init__(self):
        model.load_model(model_folder, -1)
        print("Loaded 3.x/4.x HD model.")
        model.eval()
        model.device()
        self.type = "output"

     
    @classmethod
    def INPUT_TYPES(s):
        #clear directory
        try:
            for file in os.listdir(interpolation_temp_input_folder):
                os.remove(os.path.join(interpolation_temp_input_folder,file))
            for file in os.listdir(interpolation_temp_output_folder):
                os.remove(os.path.join(interpolation_temp_output_folder,file))
        except:
            pass

        return {"required": 
                    {"images": ("IMAGE", ),
                     "METADATA": ("STRING",  {"default": "", "forceInput": True}  ),
                     "multiplier": ("INT", {"default": 2, "min": 1, "step": 1}),
                     
                     },

                }
                


    RETURN_TYPES = ()
    FUNCTION = "save_video"

    OUTPUT_NODE = True

    CATEGORY = "N-Suite/Video"

    RETURN_TYPES = ("IMAGE","STRING",)
    OUTPUT_IS_LIST = (True, False, )   
    RETURN_NAMES = ("IMAGES","METADATA",)
   
    FUNCTION = "interpolate"



    def interpolate(self,images,multiplier,METADATA):
        fps = METADATA[0]*multiplier
        frame_number = METADATA[1]
        video_name = METADATA[2]
 


        for image in images:
            
            full_input_temp_frame_folder,file = get_output_filename("", interpolation_temp_input_folder, ".png") 
            file_name = file
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            metadata = None
           

            #file = f"frame_{counter:05}_.png"
            img.save(full_input_temp_frame_folder, pnginfo=metadata, compress_level=0)


        try:
            file_name_number = int(file.split(".")[0])
        except:
            file_name_number = 0
        image_list = []
        if(file_name_number >= frame_number):
                
            videogen = []
            for f in os.listdir(interpolation_temp_input_folder):
                if 'png' in f:
                    videogen.append(f)
            tot_frame = len(videogen)
            videogen.sort(key= lambda x:int(x[:-4]))
            lastframe = cv2.imread(os.path.join(interpolation_temp_input_folder, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
            videogen = videogen[1:]
            h, w, _ = lastframe.shape



            tmp = max(128, int(128 / scale))
            ph = ((h - 1) // tmp + 1) * tmp
            pw = ((w - 1) // tmp + 1) * tmp
            padding = (0, pw - w, 0, ph - h)
            pbar = tqdm(total=tot_frame)

            write_buffer = Queue(maxsize=500)
            read_buffer = Queue(maxsize=500)
            _thread.start_new_thread(build_read_buffer, (interpolation_temp_input_folder, read_buffer, videogen))
            _thread.start_new_thread(clear_write_buffer, (interpolation_temp_input_folder, write_buffer, interpolation_temp_output_folder))

            I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
            I1 = F.pad(I1, padding)
            temp = None # save lastframe when processing static frame

            


            while True:
                if temp is not None:
                    frame = temp
                    temp = None
                else:
                    frame = read_buffer.get()
                if frame is None:
                    break
                I0 = I1
                I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
                I1 = F.pad(I1, padding)
                I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
                I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
                ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])

                break_flag = False
                if ssim > 0.996:
                    frame = read_buffer.get() # read a new frame
                    if frame is None:
                        break_flag = True
                        frame = lastframe
                    else:
                        temp = frame
                    I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
                    I1 = F.pad(I1, padding)
                    I1 = model.inference(I0, I1, scale)
                    I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
                    ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
                    frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
                    
                if ssim < 0.2:
                    output = []
                    for i in range(multiplier - 1):
                        output.append(I0)

                else:
                    output = make_inference(I0, I1, multiplier-1)


                write_buffer.put(lastframe)
                for mid in output:
                    mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
                    write_buffer.put(mid[:h, :w])
                    
                pbar.update(1)
                lastframe = frame
                if break_flag:
                    break


            write_buffer.put(lastframe)


            import time
            while(not write_buffer.empty()):
                time.sleep(0.1)
            pbar.close()


            
            METADATA = [fps, len(os.listdir(interpolation_temp_output_folder)),video_name]
            
            images = [os.path.join(interpolation_temp_output_folder, filename) for filename in os.listdir(interpolation_temp_output_folder) if filename.endswith(".png")]
            images.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
            
            for image in images:
            
                image_list.append(image_preprocessing(Image.open(image)))




        return ( image_list,METADATA) 



# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
    "FrameInterpolator [n-suite]": FrameInterpolator,

}

# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
    "FrameInterpolator [n-suite]": "FrameInterpolator [πŸ…-πŸ…’πŸ…€πŸ…˜πŸ…£πŸ…”]"
}