Stable-X's picture
Upload folder using huggingface_hub
e4bf056 verified
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Base class for the global alignement procedure
# --------------------------------------------------------
from copy import deepcopy
import numpy as np
import torch
import torch.nn as nn
import roma
from copy import deepcopy
import tqdm
from dust3r.utils.geometry import inv, geotrf
from dust3r.utils.device import to_numpy
from dust3r.utils.image import rgb
from dust3r.viz import SceneViz, segment_sky, auto_cam_size
from dust3r.optim_factory import adjust_learning_rate_by_lr
from dust3r.cloud_opt.commons import (edge_str, ALL_DISTS, NoGradParamDict, get_imshapes, signed_expm1, signed_log1p,
cosine_schedule, linear_schedule, get_conf_trf)
import dust3r.cloud_opt.init_im_poses as init_fun
class BasePCOptimizer (nn.Module):
""" Optimize a global scene, given a list of pairwise observations.
Graph node: images
Graph edges: observations = (pred1, pred2)
"""
def __init__(self, *args, **kwargs):
if len(args) == 1 and len(kwargs) == 0:
other = deepcopy(args[0])
attrs = '''edges is_symmetrized dist n_imgs pred_i pred_j imshapes
min_conf_thr conf_thr conf_i conf_j im_conf
base_scale norm_pw_scale POSE_DIM pw_poses
pw_adaptors pw_adaptors has_im_poses rand_pose imgs verbose'''.split()
self.__dict__.update({k: other[k] for k in attrs})
else:
self._init_from_views(*args, **kwargs)
def _init_from_views(self, view1, view2, pred1, pred2,
dist='l1',
conf='log',
min_conf_thr=3,
base_scale=0.5,
allow_pw_adaptors=False,
pw_break=20,
rand_pose=torch.randn,
iterationsCount=None,
verbose=True):
super().__init__()
if not isinstance(view1['idx'], list):
view1['idx'] = view1['idx'].tolist()
if not isinstance(view2['idx'], list):
view2['idx'] = view2['idx'].tolist()
self.edges = [(int(i), int(j)) for i, j in zip(view1['idx'], view2['idx'])]
self.is_symmetrized = set(self.edges) == {(j, i) for i, j in self.edges}
self.dist = ALL_DISTS[dist]
self.verbose = verbose
self.n_imgs = self._check_edges()
# input data
pred1_pts = pred1['pts3d']
pred2_pts = pred2['pts3d_in_other_view']
self.pred_i = NoGradParamDict({ij: pred1_pts[n] for n, ij in enumerate(self.str_edges)})
self.pred_j = NoGradParamDict({ij: pred2_pts[n] for n, ij in enumerate(self.str_edges)})
self.imshapes = get_imshapes(self.edges, pred1_pts, pred2_pts)
# work in log-scale with conf
pred1_conf = pred1['conf']
pred2_conf = pred2['conf']
self.min_conf_thr = min_conf_thr
self.conf_trf = get_conf_trf(conf)
self.conf_i = NoGradParamDict({ij: pred1_conf[n] for n, ij in enumerate(self.str_edges)})
self.conf_j = NoGradParamDict({ij: pred2_conf[n] for n, ij in enumerate(self.str_edges)})
self.im_conf = self._compute_img_conf(pred1_conf, pred2_conf)
# pairwise pose parameters
self.base_scale = base_scale
self.norm_pw_scale = True
self.pw_break = pw_break
self.POSE_DIM = 7
self.pw_poses = nn.Parameter(rand_pose((self.n_edges, 1+self.POSE_DIM))) # pairwise poses
self.pw_adaptors = nn.Parameter(torch.zeros((self.n_edges, 2))) # slight xy/z adaptation
self.pw_adaptors.requires_grad_(allow_pw_adaptors)
self.has_im_poses = False
self.rand_pose = rand_pose
# possibly store images for show_pointcloud
self.imgs = None
if 'img' in view1 and 'img' in view2:
imgs = [torch.zeros((3,)+hw) for hw in self.imshapes]
for v in range(len(self.edges)):
idx = view1['idx'][v]
imgs[idx] = view1['img'][v]
idx = view2['idx'][v]
imgs[idx] = view2['img'][v]
self.imgs = rgb(imgs)
@property
def n_edges(self):
return len(self.edges)
@property
def str_edges(self):
return [edge_str(i, j) for i, j in self.edges]
@property
def imsizes(self):
return [(w, h) for h, w in self.imshapes]
@property
def device(self):
return next(iter(self.parameters())).device
def state_dict(self, trainable=True):
all_params = super().state_dict()
return {k: v for k, v in all_params.items() if k.startswith(('_', 'pred_i.', 'pred_j.', 'conf_i.', 'conf_j.')) != trainable}
def load_state_dict(self, data):
return super().load_state_dict(self.state_dict(trainable=False) | data)
def _check_edges(self):
indices = sorted({i for edge in self.edges for i in edge})
assert indices == list(range(len(indices))), 'bad pair indices: missing values '
return len(indices)
@torch.no_grad()
def _compute_img_conf(self, pred1_conf, pred2_conf):
im_conf = nn.ParameterList([torch.zeros(hw, device=self.device) for hw in self.imshapes])
for e, (i, j) in enumerate(self.edges):
im_conf[i] = torch.maximum(im_conf[i], pred1_conf[e])
im_conf[j] = torch.maximum(im_conf[j], pred2_conf[e])
return im_conf
def get_adaptors(self):
adapt = self.pw_adaptors
adapt = torch.cat((adapt[:, 0:1], adapt), dim=-1) # (scale_xy, scale_xy, scale_z)
if self.norm_pw_scale: # normalize so that the product == 1
adapt = adapt - adapt.mean(dim=1, keepdim=True)
return (adapt / self.pw_break).exp()
def _get_poses(self, poses):
# normalize rotation
Q = poses[:, :4]
T = signed_expm1(poses[:, 4:7])
RT = roma.RigidUnitQuat(Q, T).normalize().to_homogeneous()
return RT
def _set_pose(self, poses, idx, R, T=None, scale=None, force=False):
# all poses == cam-to-world
pose = poses[idx]
if not (pose.requires_grad or force):
return pose
if R.shape == (4, 4):
assert T is None
T = R[:3, 3]
R = R[:3, :3]
if R is not None:
pose.data[0:4] = roma.rotmat_to_unitquat(R)
if T is not None:
pose.data[4:7] = signed_log1p(T / (scale or 1)) # translation is function of scale
if scale is not None:
assert poses.shape[-1] in (8, 13)
pose.data[-1] = np.log(float(scale))
return pose
def get_pw_norm_scale_factor(self):
if self.norm_pw_scale:
# normalize scales so that things cannot go south
# we want that exp(scale) ~= self.base_scale
return (np.log(self.base_scale) - self.pw_poses[:, -1].mean()).exp()
else:
return 1 # don't norm scale for known poses
def get_pw_scale(self):
scale = self.pw_poses[:, -1].exp() # (n_edges,)
scale = scale * self.get_pw_norm_scale_factor()
return scale
def get_pw_poses(self): # cam to world
RT = self._get_poses(self.pw_poses)
scaled_RT = RT.clone()
scaled_RT[:, :3] *= self.get_pw_scale().view(-1, 1, 1) # scale the rotation AND translation
return scaled_RT
def get_masks(self):
return [(conf > self.min_conf_thr) for conf in self.im_conf]
def depth_to_pts3d(self):
raise NotImplementedError()
def get_pts3d(self, raw=False):
res = self.depth_to_pts3d()
if not raw:
res = [dm[:h*w].view(h, w, 3) for dm, (h, w) in zip(res, self.imshapes)]
return res
def _set_focal(self, idx, focal, force=False):
raise NotImplementedError()
def get_focals(self):
raise NotImplementedError()
def get_known_focal_mask(self):
raise NotImplementedError()
def get_principal_points(self):
raise NotImplementedError()
def get_conf(self, mode=None):
trf = self.conf_trf if mode is None else get_conf_trf(mode)
return [trf(c) for c in self.im_conf]
def get_im_poses(self):
raise NotImplementedError()
def _set_depthmap(self, idx, depth, force=False):
raise NotImplementedError()
def get_depthmaps(self, raw=False):
raise NotImplementedError()
@torch.no_grad()
def clean_pointcloud(self, tol=0.001, max_bad_conf=0):
""" Method:
1) express all 3d points in each camera coordinate frame
2) if they're in front of a depthmap --> then lower their confidence
"""
assert 0 <= tol < 1
cams = inv(self.get_im_poses())
K = self.get_intrinsics()
depthmaps = self.get_depthmaps()
res = deepcopy(self)
for i, pts3d in enumerate(self.depth_to_pts3d()):
for j in range(self.n_imgs):
if i == j:
continue
# project 3dpts in other view
Hi, Wi = self.imshapes[i]
Hj, Wj = self.imshapes[j]
proj = geotrf(cams[j], pts3d[:Hi*Wi]).reshape(Hi, Wi, 3)
proj_depth = proj[:, :, 2]
u, v = geotrf(K[j], proj, norm=1, ncol=2).round().long().unbind(-1)
# check which points are actually in the visible cone
msk_i = (proj_depth > 0) & (0 <= u) & (u < Wj) & (0 <= v) & (v < Hj)
msk_j = v[msk_i], u[msk_i]
# find bad points = those in front but less confident
bad_points = (proj_depth[msk_i] < (1-tol) * depthmaps[j][msk_j]
) & (res.im_conf[i][msk_i] < res.im_conf[j][msk_j])
bad_msk_i = msk_i.clone()
bad_msk_i[msk_i] = bad_points
res.im_conf[i][bad_msk_i] = res.im_conf[i][bad_msk_i].clip_(max=max_bad_conf)
return res
def forward(self, ret_details=False):
pw_poses = self.get_pw_poses() # cam-to-world
pw_adapt = self.get_adaptors()
proj_pts3d = self.get_pts3d()
# pre-compute pixel weights
weight_i = {i_j: self.conf_trf(c) for i_j, c in self.conf_i.items()}
weight_j = {i_j: self.conf_trf(c) for i_j, c in self.conf_j.items()}
loss = 0
if ret_details:
details = -torch.ones((self.n_imgs, self.n_imgs))
for e, (i, j) in enumerate(self.edges):
i_j = edge_str(i, j)
# distance in image i and j
aligned_pred_i = geotrf(pw_poses[e], pw_adapt[e] * self.pred_i[i_j])
aligned_pred_j = geotrf(pw_poses[e], pw_adapt[e] * self.pred_j[i_j])
li = self.dist(proj_pts3d[i], aligned_pred_i, weight=weight_i[i_j]).mean()
lj = self.dist(proj_pts3d[j], aligned_pred_j, weight=weight_j[i_j]).mean()
loss = loss + li + lj
if ret_details:
details[i, j] = li + lj
loss /= self.n_edges # average over all pairs
if ret_details:
return loss, details
return loss
def get_mst_tree(self):
return init_fun.init_minimum_spanning_tree(self, return_tree=True)
def get_tsp(self):
return init_fun.get_tsp(self)
@torch.cuda.amp.autocast(enabled=False)
def compute_global_alignment(self, init=None, niter_PnP=10, **kw):
if init is None:
pass
elif init == 'msp' or init == 'mst':
init_fun.init_minimum_spanning_tree(self, niter_PnP=niter_PnP)
elif init == 'known_poses':
init_fun.init_from_known_poses(self, min_conf_thr=self.min_conf_thr,
niter_PnP=niter_PnP)
else:
raise ValueError(f'bad value for {init=}')
return global_alignment_loop(self, **kw)
@torch.no_grad()
def mask_sky(self):
res = deepcopy(self)
for i in range(self.n_imgs):
sky = segment_sky(self.imgs[i])
res.im_conf[i][sky] = 0
return res
def show(self, show_pw_cams=False, show_pw_pts3d=False, cam_size=None, **kw):
viz = SceneViz()
if self.imgs is None:
colors = np.random.randint(0, 256, size=(self.n_imgs, 3))
colors = list(map(tuple, colors.tolist()))
for n in range(self.n_imgs):
viz.add_pointcloud(self.get_pts3d()[n], colors[n], self.get_masks()[n])
else:
viz.add_pointcloud(self.get_pts3d(), self.imgs, self.get_masks())
colors = np.random.randint(256, size=(self.n_imgs, 3))
# camera poses
im_poses = to_numpy(self.get_im_poses())
if cam_size is None:
cam_size = auto_cam_size(im_poses)
viz.add_cameras(im_poses, self.get_focals(), colors=colors,
images=self.imgs, imsizes=self.imsizes, cam_size=cam_size)
if show_pw_cams:
pw_poses = self.get_pw_poses()
viz.add_cameras(pw_poses, color=(192, 0, 192), cam_size=cam_size)
if show_pw_pts3d:
pts = [geotrf(pw_poses[e], self.pred_i[edge_str(i, j)]) for e, (i, j) in enumerate(self.edges)]
viz.add_pointcloud(pts, (128, 0, 128))
viz.show(**kw)
return viz
def global_alignment_loop(net, lr=0.01, niter=300, schedule='cosine', lr_min=1e-6):
params = [p for p in net.parameters() if p.requires_grad]
if not params:
return net
verbose = net.verbose
if verbose:
print('Global alignement - optimizing for:')
print([name for name, value in net.named_parameters() if value.requires_grad])
lr_base = lr
optimizer = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.9))
loss = float('inf')
if verbose:
with tqdm.tqdm(total=niter) as bar:
while bar.n < bar.total:
loss = global_alignment_iter(net, bar.n, niter, lr_base, lr_min, optimizer, schedule)
bar.set_postfix_str(f'{lr=:g} loss={loss:g}')
bar.update()
else:
for n in range(niter):
loss = global_alignment_iter(net, n, niter, lr_base, lr_min, optimizer, schedule)
return loss
def global_alignment_iter(net, cur_iter, niter, lr_base, lr_min, optimizer, schedule):
t = cur_iter / niter
if schedule == 'cosine':
lr = cosine_schedule(t, lr_base, lr_min)
elif schedule == 'linear':
lr = linear_schedule(t, lr_base, lr_min)
else:
raise ValueError(f'bad lr {schedule=}')
adjust_learning_rate_by_lr(optimizer, lr)
optimizer.zero_grad()
loss = net()
loss.backward()
optimizer.step()
return float(loss)