Spaces:
Running
on
L40S
Running
on
L40S
import numpy as np | |
import open3d as o3d | |
import torch | |
from tqdm import tqdm | |
import torch.nn.functional as F | |
def pts2normal(pts): | |
h, w, _ = pts.shape | |
# Compute differences in x and y directions | |
dx = torch.cat([pts[2:, 1:-1] - pts[:-2, 1:-1]], dim=0) | |
dy = torch.cat([pts[1:-1, 2:] - pts[1:-1, :-2]], dim=1) | |
# Compute normal vectors using cross product | |
normal_map = F.normalize(torch.cross(dx, dy, dim=-1), dim=-1) | |
# Create padded normal map | |
padded_normal_map = torch.zeros_like(pts) | |
padded_normal_map[1:-1, 1:-1, :] = normal_map | |
# Pad the borders | |
padded_normal_map[0, 1:-1, :] = normal_map[0, :, :] # Top edge | |
padded_normal_map[-1, 1:-1, :] = normal_map[-1, :, :] # Bottom edge | |
padded_normal_map[1:-1, 0, :] = normal_map[:, 0, :] # Left edge | |
padded_normal_map[1:-1, -1, :] = normal_map[:, -1, :] # Right edge | |
# Pad the corners | |
padded_normal_map[0, 0, :] = normal_map[0, 0, :] # Top-left corner | |
padded_normal_map[0, -1, :] = normal_map[0, -1, :] # Top-right corner | |
padded_normal_map[-1, 0, :] = normal_map[-1, 0, :] # Bottom-left corner | |
padded_normal_map[-1, -1, :] = normal_map[-1, -1, :] # Bottom-right corner | |
return padded_normal_map | |
def point2mesh(pcd, depth=8, density_threshold=0.1, clean_mesh=True): | |
print("\nPerforming Poisson surface reconstruction...") | |
mesh, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( | |
pcd, depth=depth, width=0, scale=1.1, linear_fit=False) | |
print(f"Reconstructed mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles") | |
# Normalize densities | |
densities = np.asarray(densities) | |
densities = (densities - densities.min()) / (densities.max() - densities.min()) | |
# Remove low density vertices | |
print("\nPruning low-density vertices...") | |
vertices_to_remove = densities < np.quantile(densities, density_threshold) | |
mesh.remove_vertices_by_mask(vertices_to_remove) | |
print(f"Pruned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles") | |
if clean_mesh: | |
print("\nCleaning the mesh...") | |
mesh.remove_degenerate_triangles() | |
mesh.remove_duplicated_triangles() | |
mesh.remove_duplicated_vertices() | |
mesh.remove_non_manifold_edges() | |
print(f"Final cleaned mesh has {len(mesh.vertices)} vertices and {len(mesh.triangles)} triangles") | |
mesh.compute_triangle_normals() | |
return mesh | |
def combine_and_clean_point_clouds(pcds, voxel_size): | |
""" | |
Combine, downsample, and clean a list of point clouds. | |
Parameters: | |
pcds (list): List of open3d.geometry.PointCloud objects to be processed. | |
voxel_size (float): The size of the voxel for downsampling. | |
Returns: | |
o3d.geometry.PointCloud: The cleaned and combined point cloud. | |
""" | |
print("\nCombining point clouds...") | |
pcd_combined = o3d.geometry.PointCloud() | |
for p3d in pcds: | |
pcd_combined += p3d | |
print("\nDownsampling the combined point cloud...") | |
pcd_combined = pcd_combined.voxel_down_sample(voxel_size) | |
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points") | |
print("\nCleaning the combined point cloud...") | |
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) | |
pcd_cleaned = pcd_combined.select_by_index(ind) | |
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.") | |
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.") | |
return pcd_cleaned | |
def improved_multiway_registration(pcds, descriptors=None, voxel_size=0.05, | |
max_correspondence_distance_coarse=None, max_correspondence_distance_fine=None, | |
overlap=5, quadratic_overlap=False, use_colored_icp=False): | |
if max_correspondence_distance_coarse is None: | |
max_correspondence_distance_coarse = voxel_size * 1.5 | |
if max_correspondence_distance_fine is None: | |
max_correspondence_distance_fine = voxel_size * 0.15 | |
def pairwise_registration(source, target, use_colored_icp, max_correspondence_distance_coarse, max_correspondence_distance_fine): | |
current_transformation = np.identity(4) | |
try: | |
if use_colored_icp: | |
icp_fine = o3d.pipelines.registration.registration_colored_icp( | |
source, target, max_correspondence_distance_fine, current_transformation, | |
o3d.pipelines.registration.TransformationEstimationForColoredICP(), | |
o3d.pipelines.registration.ICPConvergenceCriteria(relative_fitness=1e-6, | |
relative_rmse=1e-6, | |
max_iteration=100)) | |
else: | |
icp_fine = o3d.pipelines.registration.registration_icp( | |
source, target, max_correspondence_distance_fine, | |
current_transformation, | |
o3d.pipelines.registration.TransformationEstimationPointToPlane()) | |
fitness = icp_fine.fitness | |
FITNESS_THRESHOLD = 0.01 | |
if fitness >= FITNESS_THRESHOLD: | |
current_transformation = icp_fine.transformation | |
information_icp = o3d.pipelines.registration.get_information_matrix_from_point_clouds( | |
source, target, max_correspondence_distance_fine, | |
current_transformation) | |
return current_transformation, information_icp, True | |
else: | |
print(f"Registration failed. Fitness {fitness} is below threshold {FITNESS_THRESHOLD}") | |
return None, None, False | |
except RuntimeError as e: | |
print(f" ICP registration failed: {str(e)}") | |
return None, None, False | |
def detect_loop_closure(descriptors, min_interval=3, similarity_threshold=0.9): | |
n_pcds = len(descriptors) | |
loop_edges = [] | |
for i in range(n_pcds): | |
for j in range(i + min_interval, n_pcds): | |
similarity = torch.dot(descriptors[i], descriptors[j]) | |
if similarity > similarity_threshold: | |
loop_edges.append((i, j)) | |
return loop_edges | |
def generate_pairs(n_pcds, overlap, quadratic_overlap): | |
pairs = [] | |
for i in range(n_pcds - 1): | |
for j in range(i + 1, min(i + overlap + 1, n_pcds)): | |
pairs.append((i, j)) | |
if quadratic_overlap: | |
q = 2**(j-i) | |
if q > overlap and i + q < n_pcds: | |
pairs.append((i, i + q)) | |
return pairs | |
def full_registration(pcds_down, pairs, loop_edges): | |
pose_graph = o3d.pipelines.registration.PoseGraph() | |
n_pcds = len(pcds_down) | |
for i in range(n_pcds): | |
pose_graph.nodes.append(o3d.pipelines.registration.PoseGraphNode(np.identity(4))) | |
print("\nPerforming pairwise registration:") | |
for source_id, target_id in tqdm(pairs): | |
transformation_icp, information_icp, success = pairwise_registration( | |
pcds_down[source_id], pcds_down[target_id], use_colored_icp, | |
max_correspondence_distance_coarse, max_correspondence_distance_fine) | |
if success: | |
uncertain = abs(target_id - source_id) == 1 | |
pose_graph.edges.append( | |
o3d.pipelines.registration.PoseGraphEdge(source_id, | |
target_id, | |
transformation_icp, | |
information_icp, | |
uncertain=uncertain)) | |
else: | |
print(f" Skipping edge between {source_id} and {target_id} due to ICP failure") | |
# Add loop closure edges | |
print("\nAdding loop closure edges:") | |
for source_id, target_id in tqdm(loop_edges): | |
transformation_icp, information_icp, success = pairwise_registration( | |
pcds_down[source_id], pcds_down[target_id], use_colored_icp, | |
max_correspondence_distance_coarse, max_correspondence_distance_fine) | |
if success: | |
pose_graph.edges.append( | |
o3d.pipelines.registration.PoseGraphEdge(source_id, | |
target_id, | |
transformation_icp, | |
information_icp, | |
uncertain=True)) | |
else: | |
print(f" Skipping loop closure edge between {source_id} and {target_id} due to ICP failure") | |
return pose_graph | |
print("\n--- Improved Multiway Registration Process ---") | |
print(f"Number of point clouds: {len(pcds)}") | |
print(f"Voxel size: {voxel_size}") | |
print(f"Max correspondence distance (coarse): {max_correspondence_distance_coarse}") | |
print(f"Max correspondence distance (fine): {max_correspondence_distance_fine}") | |
print(f"Overlap: {overlap}") | |
print(f"Quadratic overlap: {quadratic_overlap}") | |
print("\nPreprocessing point clouds...") | |
pcds_down = pcds | |
print(f"Preprocessing complete. {len(pcds_down)} point clouds processed.") | |
print("\nGenerating initial graph pairs...") | |
pairs = generate_pairs(len(pcds), overlap, quadratic_overlap) | |
print(f"Generated {len(pairs)} pairs for initial graph.") | |
if descriptors is None: | |
print("\nNo descriptors provided. Skipping loop closure detection.") | |
loop_edges = [] | |
else: | |
print(descriptors[0].shape) | |
print("\nDetecting loop closures...") | |
loop_edges = detect_loop_closure(descriptors) | |
print(f"Detected {len(loop_edges)} loop closures.") | |
print("\nPerforming full registration...") | |
pose_graph = full_registration(pcds_down, pairs, loop_edges) | |
print("\nOptimizing PoseGraph...") | |
option = o3d.pipelines.registration.GlobalOptimizationOption( | |
max_correspondence_distance=max_correspondence_distance_fine, | |
edge_prune_threshold=0.25, | |
reference_node=0) | |
o3d.pipelines.registration.global_optimization( | |
pose_graph, | |
o3d.pipelines.registration.GlobalOptimizationLevenbergMarquardt(), | |
o3d.pipelines.registration.GlobalOptimizationConvergenceCriteria(), | |
option) | |
# Count edges for each node | |
edge_count = {i: 0 for i in range(len(pcds))} | |
for edge in pose_graph.edges: | |
edge_count[edge.source_node_id] += 1 | |
edge_count[edge.target_node_id] += 1 | |
# Filter nodes with more than 3 edges | |
valid_nodes = [count > 3 for count in edge_count.values()] | |
print("\nTransforming and combining point clouds...") | |
pcd_combined = o3d.geometry.PointCloud() | |
for point_id, is_valid in enumerate(valid_nodes): | |
if is_valid: | |
pcds[point_id].transform(pose_graph.nodes[point_id].pose) | |
pcd_combined += pcds[point_id] | |
else: | |
print(f"Skipping point cloud {point_id} as it has {edge_count[point_id]} edges (<=3)") | |
print("\nDownsampling the combined point cloud...") | |
# pcd_combined.orient_normals_consistent_tangent_plane(k=30) | |
pcd_combined = pcd_combined.voxel_down_sample(voxel_size * 0.1) | |
print(f"Downsampled from {len(pcd_combined.points)} to {len(pcd_combined.points)} points") | |
print("\nCleaning the combined point cloud...") | |
cl, ind = pcd_combined.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) | |
pcd_cleaned = pcd_combined.select_by_index(ind) | |
print(f"Cleaned point cloud contains {len(pcd_cleaned.points)} points.") | |
print(f"Removed {len(pcd_combined.points) - len(pcd_cleaned.points)} outlier points.") | |
print("\nMultiway registration complete.") | |
print(f"Included {len(valid_nodes)} out of {len(pcds)} point clouds (with >3 edges).") | |
return pcd_cleaned, pose_graph, valid_nodes |