File size: 18,471 Bytes
8eebfdf b91bd2c de03b20 25a8deb 4eb74c4 25a8deb 4eb74c4 25a8deb 4eb74c4 b91bd2c 4eb74c4 25a8deb 4eb74c4 25a8deb 844cfc1 25a8deb 93c49fb 25a8deb b91bd2c 25a8deb b91bd2c 844cfc1 b91bd2c 25a8deb b91bd2c 25a8deb 844cfc1 446742d b91bd2c 14d7026 b91bd2c 25a8deb b91bd2c 14d7026 25a8deb b91bd2c f30fc7f b91bd2c 6c51481 b91bd2c f30fc7f 6c51481 b91bd2c 93c49fb b91bd2c 844cfc1 fab4024 763c5e6 844cfc1 b8b02a2 844cfc1 e554d4f 763c5e6 844cfc1 763c5e6 844cfc1 b8b02a2 844cfc1 08648ba 844cfc1 763c5e6 844cfc1 763c5e6 844cfc1 b91bd2c 25a8deb b91bd2c 844cfc1 b91bd2c 844cfc1 b91bd2c 844cfc1 b8b02a2 844cfc1 25a8deb 844cfc1 b8b02a2 844cfc1 25a8deb 6a3f0d0 25a8deb 844cfc1 25a8deb e878310 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
# import parsing # decomment to download data from the website and parse it #
from string import punctuation
from tqdm.auto import tqdm, trange
import torch
from transformers import AutoTokenizer, AutoModel
import datasets
import pandas as pd
import nltk
from nltk import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import wordnet # for lemmtization
from nltk import pos_tag # for parts of speech
nltk.download('omw-1.4') #this is for the .apply() function to work
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
nltk.download('stopwords')
import numpy as np
import os
import re #regular expressions
import time
from sklearn.feature_extraction.text import CountVectorizer # for bag of words (bow)
from sklearn.feature_extraction.text import TfidfVectorizer #for tfidf
from sklearn.metrics import pairwise_distances # cosine similarity
from sklearn.metrics.pairwise import cosine_similarity
from gensim.models import Word2Vec, KeyedVectors
import gensim.downloader as api
import gradio as gr
import time
# Take Rachel as main character
df = pd.read_csv("rachel_friends.csv") # read the database into a data frame
#-------------------------------------TF-IDF------------------------------------------#
# Define function for text normalization
def text_normalization(text):
text = str(text).lower() # convert to all lower letters
spl_char_text = re.sub(r'[^a-z]', ' ', text) # remove any special characters including numbers
tokens = nltk.word_tokenize(spl_char_text) # tokenize words
lema = wordnet.WordNetLemmatizer() # lemmatizer initiation
tags_list = pos_tag(tokens, tagset = None) # parts of speech
lema_words = []
for token, pos_token in tags_list:
if pos_token.startswith('V'): # if the tag from tag_list is a verb, assign 'v' to it's pos_val
pos_val = 'v'
elif pos_token.startswith('J'): # adjective
pos_val = 'a'
elif pos_token.startswith('R'): # adverb
pos_val = 'r'
else: # otherwise it must be a noun
pos_val = 'n'
lema_token = lema.lemmatize(token, pos_val) # performing lemmatization
lema_words.append(lema_token) # addid the lemmatized words into our list
return " ".join(lema_words) # return our list as a human sentence
# Preprocess data and insert to dataframe
question_normalized = df['question'].apply(text_normalization)
df.insert(2, 'Normalized question', question_normalized, True)
# Define function to delete stopwords from the sentences
stop = stopwords.words('english') # Include stop words
stop = [] # Exclude stopwords
def removeStopWords(text):
Q = []
s = text.split() # create an array of words from our text sentence, cut it into words
q = ''
for w in s: # for every word in the given sentence if the word is a stop word ignore it
if w in stop:
continue
else: # otherwise add it to the end of our array
Q.append(w)
q = " ".join(Q) # create a sentence out of our array of non stop words
return q
# Preprocess data and insert to dataframe
question_norm_and_stop = df['Normalized question'].apply(removeStopWords)
df.insert(3, 'Normalized and StopWords question', question_norm_and_stop, True)
tfidf = TfidfVectorizer(ngram_range=(1,3), max_features=5024) # initializing tf-idf
x_tfidf = tfidf.fit_transform(df['Normalized and StopWords question']).toarray() # oversimplifying this converts words to vectors
features_tfidf = tfidf.get_feature_names_out() # use function to get all the normalized words
df_tfidf = pd.DataFrame(x_tfidf, columns = features_tfidf) # create dataframe to show the 0, 1 value for each word
# bot tf idf algorithm without context
def chat_tfidf(question):
tidy_question = text_normalization(removeStopWords(question)) # clean & lemmatize the question
tf = tfidf.transform([tidy_question]).toarray() # convert the question into a vector
cos = 1- pairwise_distances(df_tfidf, tf, metric = 'cosine') # calculate the cosine value
index_value = cos.argmax() # find the index of the maximum cosine value
# answer = Answer("Ross", df['answer'].loc[index_value])
answer = df['answer'].loc[index_value]
return answer
# bot tf idf algorithm with context
def chat_tfidf_context(question, history):
len_history = len(history)
if len_history > 1:
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
# take last two sentences in accordance to bot's memory
history = history[-2:]
else:
memory_weights = np.array([0.3, 1.0])
history_sentence = np.zeros(shape=(len_history+1, 5024))
for ind, h in enumerate(history):
# normalize first question from context
tidy_question = text_normalization(removeStopWords(h[0]))
# pass via tfidf
tf = tfidf.transform([tidy_question]).toarray()
# assign tf idf vector to history sentence
history_sentence[ind] = tf * memory_weights[ind]
tidy_question = text_normalization(removeStopWords(question))
tf = tfidf.transform([tidy_question]).toarray()
history_sentence[-1] = tf
history_sentence = history_sentence.mean(axis=0).reshape(1,-1)
cos = 1- pairwise_distances(df_tfidf, history_sentence, metric = 'cosine')
index_value = cos.argmax()
answer = df['answer'].loc[index_value]
return answer
#-------------------------------------W2V------------------------------------------#
punkt = [p for p in punctuation] + ["`", "``" ,"''", "'"]
def tokenize(sent: str) -> str:
tokens = nltk.word_tokenize(sent.lower()) # tokenize words
return ' '.join([word for word in tokens if word not in stop and word not in punkt])
questions_preprocessed = []
for question in df["question"].tolist() + df["answer"].tolist():
questions_preprocessed.append(tokenize(question))
questions_w2v = [sent.split(" ") for sent in questions_preprocessed]
w2v = KeyedVectors.load('w2v.bin')
unknown_vector = np.random.uniform(low=-0.2, high=0.2, size=(25,))
# define function to form sentences with w2v
def w2v_get_vector_for_sentence(sentence):
sent = nltk.word_tokenize(sentence.lower())
sent = [word for word in sent if word not in punkt]
sentence_vector = []
if len(sent)==0:
sentence_vector.append(unknown_vector)
else:
for word in sent:
if word in w2v.key_to_index:
sentence_vector.append(w2v[word])
else:
sentence_vector.append(unknown_vector)
return np.array(sentence_vector).mean(axis=0)
# create base for w2v
base = np.zeros(shape=(len(df.question), 25))
for ind, sentence in enumerate(df['question']): # df[df['question'].str.len() >= 1]
base[ind] = w2v_get_vector_for_sentence(sentence)
# bot w2v algorithm without context
def chat_word2vec(question):
question = [w2v_get_vector_for_sentence(question)]
cos = 1-pairwise_distances(base, question, metric = 'cosine') # calculate the cosine value
index_value = cos.argmax() # find the index of the maximum cosine value
answer = df['answer'].loc[index_value]
return answer
# bot w2v algorithm with context
def chat_word2vec_context(question, history):
len_history = len(history)
if len_history > 1:
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
# take last two sentences in accordance to bot's memory
history = history[-2:]
else:
memory_weights = np.array([0.3, 1.0])
history_sentence = np.zeros(shape=(len_history+1, 25))
for ind, h in enumerate(history):
sentence = w2v_get_vector_for_sentence(h[0])
history_sentence[ind] = sentence * memory_weights[ind]
question = w2v_get_vector_for_sentence(question)
history_sentence[-1] = question
history_sentence = history_sentence.mean(axis=0).reshape(1, -1)
cos = 1-pairwise_distances(base, history_sentence, metric = 'cosine')
index_value = cos.argmax()
answer = df['answer'].loc[index_value]
return answer
#-------------------------------------BERT------------------------------------------#
# Let's try bert model by elastic and with e5
model_name = "distilbert/distilbert-base-uncased"
device = "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
class BERTSearchEngine:
def __init__(self, model, tokenizer, text_database):
self.raw_procesed_data = [self.preprocess(sample, tokenizer) for sample in text_database]
self.base = []
self.retriever = None
self.inverted_index = {}
self._init_retriever(model, tokenizer, text_database)
self._init_inverted_index(text_database)
@staticmethod
def preprocess(sentence: str, tokenizer):
return tokenizer(sentence, padding=True, truncation=True, return_tensors='pt')
def _embed_bert_cls(self, tokenized_text: dict[torch.Tensor]) -> np.array:
with torch.no_grad():
model_output = self.retriever(**{k: v.to(self.retriever.device) for k, v in tokenized_text.items()})
embeddings = model_output.last_hidden_state[:, 0, :]
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
def _init_retriever(self, model, tokenizer, text_database):
self.retriever = model
self.tokenizer = tokenizer
self.base = np.load("bert_base.npy") #np.array([self._embed_bert_cls(self.preprocess(text, tokenizer)) for text in tqdm(text_database)])
def retrieve(self, query: str) -> np.array:
return self._embed_bert_cls(self.preprocess(query, self.tokenizer))
def retrieve_documents(self, query: str, top_k=3) -> list[int]:
query_vector = self.retrieve(query)
cosine_similarities = cosine_similarity([query_vector], self.base).flatten()
relevant_indices = np.argsort(cosine_similarities, axis=0)[::-1][:top_k]
return relevant_indices.tolist()
def _init_inverted_index(self, text_database: list[str]):
self.inverted_index = dict(enumerate(text_database))
def display_relevant_docs(self, query, full_database, top_k=3) -> list[int]:
docs_indexes = self.retrieve_documents(query, top_k=top_k)
return [self.inverted_index[ind] for ind in docs_indexes]
def find_answer(self, query: str) -> int:
query_vector = self.retrieve(query)
cosine_similarities = cosine_similarity([query_vector], self.base).flatten()
relevant_indice = np.argmax(cosine_similarities, axis=0)
return relevant_indice
simple_search_engine = BERTSearchEngine(model, tokenizer, df["question"])
# simple_search_engine.bert = np.load(bert_base.npy)
# bot bert algorithm without context
def chat_bert(question):
ind = simple_search_engine.find_answer(question)
answer = df['answer'].iloc[ind]
return answer
# bot bert algorithm with context
def chat_bert_context(question, history):
len_history = len(history)
if len_history > 1:
memory_weights = np.array([0.1, 0.3, 1.0]) # .reshape((3,1))
# take last two sentences in accordance to bot's memory
history = history[-2:]
else:
memory_weights = np.array([0.3, 1.0])
history_sentence = np.zeros(shape=(len_history+1, 768))
for ind, h in enumerate(history):
sentence = simple_search_engine.retrieve(h)
history_sentence[ind] = sentence * memory_weights[ind]
question = simple_search_engine.retrieve(question)
history_sentence[-1] = question
history_sentence = history_sentence.mean(axis=0).reshape(1, -1)
cosine_similarities = cosine_similarity(history_sentence, simple_search_engine.base).flatten()
relevant_indice = np.argmax(cosine_similarities, axis=0)
answer = df['answer'].loc[relevant_indice]
return answer
#-------------------------------------Bi-BERT-Encoder------------------------------------------#
MAX_LENGTH = 128
inverted_answer = dict(enumerate(df.answer.tolist()))
# Define function for mean-pooling
def mean_pool(token_embeds: torch.tensor, attention_mask: torch.tensor) -> torch.tensor:
in_mask = attention_mask.unsqueeze(-1).expand(token_embeds.size()).float()
pool = torch.sum(token_embeds * in_mask, 1) / torch.clamp(in_mask.sum(1), min=1e-9)
return pool
# Define function for tokenization of the sentence and encoding it
def encode(input_texts: list[str], tokenizer: AutoTokenizer, model: AutoModel, device: str = "cpu"
) -> torch.tensor:
model.eval()
tokenized_texts = tokenizer(input_texts, max_length=128,
padding='max_length', truncation=True, return_tensors="pt")
token_embeds = model(tokenized_texts["input_ids"].to(device),
tokenized_texts["attention_mask"].to(device)).last_hidden_state
pooled_embeds = mean_pool(token_embeds, tokenized_texts["attention_mask"].to(device))
return pooled_embeds
# Define architecture for bi-bert-encoder
class Sbert(torch.nn.Module):
def __init__(self, max_length: int = 128):
super().__init__()
self.max_length = max_length
self.bert_model = AutoModel.from_pretrained('distilbert-base-uncased')
self.bert_tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
self.linear = torch.nn.Linear(self.bert_model.config.hidden_size * 3, 1)
# self.sigmoid = torch.nn.Sigmoid()
def forward(self, data: datasets.arrow_dataset.Dataset) -> torch.tensor:
question_input_ids = data["question_input_ids"].to(device)
question_attention_mask = data["question_attention_mask"].to(device)
answer_input_ids = data["answer_input_ids"].to(device)
answer_attention_mask = data["answer_attention_mask"].to(device)
out_question = self.bert_model(question_input_ids, question_attention_mask)
out_answer = self.bert_model(answer_input_ids, answer_attention_mask)
question_embeds = out_question.last_hidden_state
answer_embeds = out_answer.last_hidden_state
pooled_question_embeds = mean_pool(question_embeds, question_attention_mask)
pooled_answer_embeds = mean_pool(answer_embeds, answer_attention_mask)
embeds = torch.cat([pooled_question_embeds, pooled_answer_embeds,
torch.abs(pooled_question_embeds - pooled_answer_embeds)],
dim=-1)
# return self.sigmoid(self.linear(embeds))
return self.linear(embeds)
# Initialize the model
model_bi_encoder = Sbert().to(device)
# Load weights from training step
model_bi_encoder.bert_model.from_pretrained("models/friends_bi_encoder")
# Load question embeds
question_embeds = np.load("bi_bert_question.npy")
def chat_bi_bert(question, history):
question = encode(question, model_bi_encoder.bert_tokenizer, model_bi_encoder.bert_model, device).squeeze().cpu().detach().numpy()
cosine_similarities = cosine_similarity([question], question_embeds).flatten()
top_indice = np.argmax(cosine_similarities, axis=0)
answer = df['answer'].iloc[top_indice]
answer = inverted_answer[top_indice]
return answer
#-------------------------------------Bi+Cross-BERT-Encoder------------------------------------------#
#Define class for CrossEncoderBert
class CrossEncoderBert(torch.nn.Module):
def __init__(self, max_length: int = MAX_LENGTH):
super().__init__()
self.max_length = max_length
self.bert_model = AutoModel.from_pretrained('distilbert-base-uncased')
self.bert_tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
self.linear = torch.nn.Linear(self.bert_model.config.hidden_size, 1)
def forward(self, input_ids, attention_mask):
outputs = self.bert_model(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs.last_hidden_state[:, 0] # Use the CLS token's output
return self.linear(pooled_output)
model_cross_encoder = CrossEncoderBert().to(device)
model_cross_encoder.bert_model.from_pretrained("models/friends_cross_encoder")
def chat_cross_bert(question, history):
question_encoded = encode(question, model_bi_encoder.bert_tokenizer, model_bi_encoder.bert_model, device).squeeze().cpu().detach().numpy()
cosine_similarities = cosine_similarity([question_encoded], question_embeds).flatten()
topk_indices = np.argsort(cosine_similarities, axis=0)[::-1][:5]
topk_indices=topk_indices.tolist()
corpus = [inverted_answer[ind] for ind in topk_indices]
queries = [question] * len(corpus)
tokenized_texts = model_cross_encoder.bert_tokenizer(
queries, corpus, max_length=MAX_LENGTH, padding=True, truncation=True, return_tensors="pt"
).to(device)
# Finetuned CrossEncoder model scoring
with torch.no_grad():
ce_scores = model_cross_encoder(tokenized_texts['input_ids'], tokenized_texts['attention_mask']).squeeze(-1)
ce_scores = torch.sigmoid(ce_scores) # Apply sigmoid if needed
# Process scores for finetuned model
scores = ce_scores.cpu().numpy()
ix = np.argmax(scores)
# print(f"{corpus[scores_ix]}")
return corpus[ix]
# gradio part
def echo(message, history, model):
if model=="TF-IDF":
# answer = chat_tfidf(message)
answer = chat_tfidf_context(message, history)
return answer
elif model=="W2V":
# answer = chat_word2vec(message)
answer = chat_word2vec_context(message, history)
return answer
elif model=="BERT":
answer = chat_bert_context(message, history)
return answer
elif model=="Bi-BERT-Encoder":
answer = chat_bi_bert(message, history)
return answer
elif model=="Bi+Cross-BERT-Encoder":
answer = chat_cross_bert(message, history)
return answer
title = "Chatbot who speaks like Rachel from Friends"
description = "You have a good opportunity to have a dialog with actress from Friends - Rachel Green"
# model = gr.CheckboxGroup(["TF-IDF", "W2V", "BERT", "BI-Encoder", "Cross-Encoder"], label="Model", info="What model do you want to use?", value="TF-IDF")
model = gr.Dropdown(["TF-IDF", "W2V", "BERT", "Bi-BERT-Encoder", "Bi+Cross-BERT-Encoder"], label="Retrieval model", info="What model do you want to use?", value="TF-IDF")
with gr.Blocks() as demo:
gr.ChatInterface(
fn=echo,
title=title,
description=description,
additional_inputs=[model],
retry_btn=None,
undo_btn=None,
clear_btn=None,
)
demo.launch(debug=False, share=True)
|