Spaces:
Sleeping
Sleeping
File size: 28,011 Bytes
a42cd71 5141c51 9efdf04 d125bbf 5141c51 70ddb7b d125bbf 70ddb7b 8a80dc4 9efdf04 70ddb7b 8ca33c0 70ddb7b 8ca33c0 70ddb7b 8ca33c0 70ddb7b 8ca33c0 70ddb7b 8ca33c0 9efdf04 5141c51 9efdf04 8e4c692 4620bed 9efdf04 10db18a 9efdf04 5141c51 9efdf04 5141c51 9efdf04 5141c51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
# # Import necessary libraries
# from fastapi import FastAPI, HTTPException
# from pydantic import BaseModel
# import gspread
# from google.oauth2.service_account import Credentials
# import pandas as pd
# from collections import defaultdict
# import os
# # Initialize the FastAPI app
# app = FastAPI()
# # Step 1: Define a function to get Google Sheets API credentials
# def get_credentials():
# """Get Google Sheets API credentials from environment variables."""
# try:
# # Construct the service account info dictionary
# service_account_info = {
# "type": os.getenv("SERVICE_ACCOUNT_TYPE"),
# "project_id": os.getenv("PROJECT_ID"),
# "private_key_id": os.getenv("PRIVATE_KEY_ID"),
# "private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
# "client_email": os.getenv("CLIENT_EMAIL"),
# "client_id": os.getenv("CLIENT_ID"),
# "auth_uri": os.getenv("AUTH_URI"),
# "token_uri": os.getenv("TOKEN_URI"),
# "auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
# "client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
# "universe_domain": os.getenv("UNIVERSE_DOMAIN")
# }
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
# return creds
# except Exception as e:
# print(f"Error getting credentials: {e}")
# return None
# # Step 2: Authorize gspread using the credentials
# creds = get_credentials()
# client = gspread.authorize(creds)
# # Input the paths and coaching code
# journal_file_path = ''
# panic_button_file_path = ''
# test_file_path = ''
# coachingCode = '1919'
# if coachingCode == '1919':
# journal_file_path = 'https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?usp=drive_link'
# panic_button_file_path = 'https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?usp=drive_link'
# test_file_path = 'https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?usp=drive_link'
# # Step 3: Open Google Sheets using the URLs
# journal_file = client.open_by_url(journal_file_path).worksheet('Sheet1')
# panic_button_file = client.open_by_url(panic_button_file_path).worksheet('Sheet1') # Fixed missing part
# test_file = client.open_by_url(test_file_path).worksheet('Sheet1')
# # Step 4: Convert the sheets into Pandas DataFrames
# journal_df = pd.DataFrame(journal_file.get_all_values())
# panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
# test_df = pd.DataFrame(test_file.get_all_values())
# # Label the columns manually since there are no headers
# journal_df.columns = ['user_id', 'productivity_yes_no', 'productivity_rate']
# panic_button_df.columns = ['user_id', 'panic_button']
# # Initialize a list for the merged data
# merged_data = []
# # Step 5: Group panic buttons by user_id and combine into a single comma-separated string
# panic_button_grouped = panic_button_df.groupby('user_id')['panic_button'].apply(lambda x: ','.join(x)).reset_index()
# # Merge journal and panic button data
# merged_journal_panic = pd.merge(journal_df, panic_button_grouped, on='user_id', how='outer')
# # Step 6: Process the test data
# test_data = []
# for index, row in test_df.iterrows():
# user_id = row[0]
# i = 1
# while i < len(row) and pd.notna(row[i]): # Process chapter and score pairs
# chapter = row[i].lower().strip()
# score = row[i + 1]
# if pd.notna(score):
# test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
# i += 2
# # Convert the processed test data into a DataFrame
# test_df_processed = pd.DataFrame(test_data)
# # Step 7: Merge the journal+panic button data with the test data
# merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
# # Step 8: Drop rows where all data (except user_id and test_chapter) is missing
# merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
# # Group the merged DataFrame by user_id
# df = pd.DataFrame(merged_data_cleaned)
# # Function to process panic button counts and test scores
# def process_group(group):
# # Panic button counts
# panic_button_series = group['panic_button'].dropna()
# panic_button_dict = panic_button_series.value_counts().to_dict()
# # Test scores aggregation
# test_scores = group[['test_chapter', 'test_score']].dropna()
# test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
# # Create the test_scores_dict excluding NaN values
# test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
# return pd.Series({
# 'productivity_yes_no': group['productivity_yes_no'].iloc[0],
# 'productivity_rate': group['productivity_rate'].iloc[0],
# 'panic_button': panic_button_dict,
# 'test_scores': test_scores_dict
# })
# # Apply the group processing function
# merged_df = df.groupby('user_id').apply(process_group).reset_index()
# # Step 9: Calculate potential score
# # Panic button weightages
# academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
# non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
# # Max weighted panic score
# max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
# # Function to calculate potential score
# def calculate_potential_score(row):
# # Test score normalization (70% weightage)
# if row['test_scores']: # Check if test_scores is not empty
# avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
# test_score_normalized = (avg_test_score / 40) * 70 # Scale test score to 70
# else:
# test_score_normalized = 0 # Default value for users with no test scores
# # Panic score calculation (20% weightage)
# student_panic_score = 0
# if row['panic_button']: # Ensure panic_button is not NaN or empty
# for factor, count in row['panic_button'].items():
# if factor in academic_weights:
# student_panic_score += academic_weights[factor] * count
# elif factor in non_academic_weights:
# student_panic_score += non_academic_weights[factor] * count
# else:
# student_panic_score = 0 # Default if no panic button issues
# # Panic score normalized to 20
# panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
# # Journal score calculation (10% weightage)
# if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
# if pd.notna(row['productivity_rate']):
# journal_score = (float(row['productivity_rate']) / 10) * 10 # Scale journal score to 10
# else:
# journal_score = 0 # Default if productivity_rate is missing
# elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
# if pd.notna(row['productivity_rate']):
# journal_score = (float(row['productivity_rate']) / 10) * 5 # Scale journal score to 5 if "No"
# else:
# journal_score = 0 # Default if productivity_rate is missing
# else:
# journal_score = 0 # Default if productivity_yes_no is missing
# # Total score based on new weightages
# total_potential_score = test_score_normalized + panic_score + journal_score
# return total_potential_score
# # Apply potential score calculation to the dataframe
# merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
# merged_df['potential_score'] = merged_df['potential_score'].round(2)
# # Step 10: Sort by potential score
# sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
# # Step 11: Define API endpoint to get the sorted potential scores
# @app.get("/sorted-potential-scores")
# async def get_sorted_potential_scores():
# try:
# result = sorted_df.to_dict(orient="records")
# return {"sorted_scores": result}
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
# Import necessary libraries
# from fastapi import FastAPI, HTTPException, Query
# from pydantic import BaseModel
# import gspread
# from google.oauth2.service_account import Credentials
# import pandas as pd
# from collections import defaultdict
# import os
# from fastapi.middleware.cors import CORSMiddleware
# # Initialize the FastAPI app
# app = FastAPI()
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # You can specify domains instead of "*" to restrict access
# allow_credentials=True,
# allow_methods=["*"], # Allows all HTTP methods (POST, GET, OPTIONS, etc.)
# allow_headers=["*"], # Allows all headers
# )
# # Step 1: Define a function to get Google Sheets API credentials
# def get_credentials():
# """Get Google Sheets API credentials from environment variables."""
# try:
# # Construct the service account info dictionary
# service_account_info = {
# "type": os.getenv("SERVICE_ACCOUNT_TYPE"),
# "project_id": os.getenv("PROJECT_ID"),
# "private_key_id": os.getenv("PRIVATE_KEY_ID"),
# "private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
# "client_email": os.getenv("CLIENT_EMAIL"),
# "client_id": os.getenv("CLIENT_ID"),
# "auth_uri": os.getenv("AUTH_URI"),
# "token_uri": os.getenv("TOKEN_URI"),
# "auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
# "client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
# "universe_domain": os.getenv("UNIVERSE_DOMAIN")
# }
# scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
# creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
# return creds
# except Exception as e:
# print(f"Error getting credentials: {e}")
# return None
# # Step 2: Authorize gspread using the credentials
# creds = get_credentials()
# client = gspread.authorize(creds)
# # Function to get file paths based on coaching code
# def get_file_paths(coaching_code):
# if coaching_code == '1919':
# return {
# 'journal': 'https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?usp=drive_link',
# 'panic_button': 'https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?usp=drive_link',
# 'test': 'https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?usp=drive_link'
# }
# if coaching_code == '0946':
# return {
# 'journal': 'https://docs.google.com/spreadsheets/d/1c1TkL7sOUvFn6UPz3gwp135UVjOou9u1weohWzpmx6I/edit?usp=drive_link',
# 'panic_button': 'https://docs.google.com/spreadsheets/d/1RhbPQnNNBUthKKJyoW4q6x3uaWl1YSqmsFlfJ2THphE/edit?usp=drive_link',
# 'test': 'https://docs.google.com/spreadsheets/d/1JO5wDkfl2fr2ZQenI8OEu48jkWm48veYN1Fsw5Ctkzw/edit?usp=drive_link'
# }
# # Panic button weightages
# academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
# non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
# # Max weighted panic score
# max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
# # Function to calculate potential score
# def calculate_potential_score(row):
# # Test score normalization (70% weightage)
# if row['test_scores']: # Check if test_scores is not empty
# avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
# test_score_normalized = (avg_test_score / 40) * 70 # Scale test score to 70
# else:
# test_score_normalized = 0 # Default value for users with no test scores
# # Panic score calculation (20% weightage)
# student_panic_score = 0
# if row['panic_button']: # Ensure panic_button is not NaN or empty
# for factor, count in row['panic_button'].items():
# if factor in academic_weights:
# student_panic_score += academic_weights[factor] * count
# elif factor in non_academic_weights:
# student_panic_score += non_academic_weights[factor] * count
# else:
# student_panic_score = 0 # Default if no panic button issues
# # Panic score normalized to 20
# panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
# # Journal score calculation (10% weightage)
# if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
# if pd.notna(row['productivity_rate']):
# journal_score = (float(row['productivity_rate']) / 10) * 10 # Scale journal score to 10
# else:
# journal_score = 0 # Default if productivity_rate is missing
# elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
# if pd.notna(row['productivity_rate']):
# journal_score = (float(row['productivity_rate']) / 10) * 5 # Scale journal score to 5 if "No"
# else:
# journal_score = 0 # Default if productivity_rate is missing
# else:
# journal_score = 0 # Default if productivity_yes_no is missing
# # Total score based on new weightages
# total_potential_score = test_score_normalized + panic_score + journal_score
# return total_potential_score
# # Step 11: Define API endpoint to get the sorted potential scores
# @app.get("/sorted-potential-scores")
# async def get_sorted_potential_scores(coaching_code: str = Query(..., description="Coaching code to determine file paths")):
# try:
# file_paths = get_file_paths(coaching_code)
# if not file_paths:
# raise HTTPException(status_code=400, detail="Invalid coaching code")
# print("A");
# # Open Google Sheets using the URLs
# journal_file = client.open_by_url(file_paths['journal']).worksheet('Sheet1')
# panic_button_file = client.open_by_url(file_paths['panic_button']).worksheet('Sheet1')
# test_file = client.open_by_url(file_paths['test']).worksheet('Sheet1')
# print("B");
# # Convert the sheets into Pandas DataFrames
# journal_df = pd.DataFrame(journal_file.get_all_values())
# panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
# test_df = pd.DataFrame(test_file.get_all_values())
# print("C");
# # Label the columns manually since there are no headers
# journal_df.columns = ['user_id', 'productivity_yes_no', 'productivity_rate']
# panic_button_df.columns = ['user_id', 'panic_button']
# print("D")
# # Initialize a list for the merged data
# merged_data = []
# # Group panic buttons by user_id and combine into a single comma-separated string
# panic_button_grouped = panic_button_df.groupby('user_id')['panic_button'].apply(lambda x: ','.join(x)).reset_index()
# print("E")
# # Merge journal and panic button data
# merged_journal_panic = pd.merge(journal_df, panic_button_grouped, on='user_id', how='outer')
# print("F")
# # Process the test data
# test_data = []
# for index, row in test_df.iterrows():
# user_id = row[0]
# i = 1
# while i < len(row) and pd.notna(row[i]): # Process chapter and score pairs
# chapter = row[i].lower().strip()
# score = row[i + 1]
# if pd.notna(score):
# test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
# i += 2
# print("G")
# # Convert the processed test data into a DataFrame
# test_df_processed = pd.DataFrame(test_data)
# print("H")
# # Merge the journal+panic button data with the test data
# merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
# print("I")
# # Drop rows where all data (except user_id and test_chapter) is missing
# merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
# print("J")
# # Group the merged DataFrame by user_id
# df = pd.DataFrame(merged_data_cleaned)
# print("K")
# # Function to process panic button counts and test scores
# def process_group(group):
# # Panic button counts
# panic_button_series = group['panic_button'].dropna()
# panic_button_dict = panic_button_series.value_counts().to_dict()
# # Test scores aggregation
# test_scores = group[['test_chapter', 'test_score']].dropna()
# test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
# # Create the test_scores_dict excluding NaN values
# test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
# return pd.Series({
# 'productivity_yes_no': group['productivity_yes_no'].iloc[0],
# 'productivity_rate': group['productivity_rate'].iloc[0],
# 'panic_button': panic_button_dict,
# 'test_scores': test_scores_dict
# })
# # Apply the group processing function
# merged_df = df.groupby('user_id').apply(process_group).reset_index()
# print("L")
# # Calculate potential scores and sort
# merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
# merged_df['potential_score'] = merged_df['potential_score'].round(2)
# sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
# print("M")
# result = sorted_df.to_dict(orient="records")
# return {"sorted_scores": result}
# except Exception as e:
# raise HTTPException(status_code=500, detail=str(e))
from fastapi import FastAPI, HTTPException, Query
from pydantic import BaseModel
import gspread
from google.oauth2.service_account import Credentials
import pandas as pd
from collections import defaultdict
import os
from fastapi.middleware.cors import CORSMiddleware
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # You can specify domains instead of "*" to restrict access
allow_credentials=True,
allow_methods=["*"], # Allows all HTTP methods (POST, GET, OPTIONS, etc.)
allow_headers=["*"], # Allows all headers
)
# Model for request
class CoachingCodeRequest(BaseModel):
coachingCode: str
# Function to get credentials
def get_credentials():
"""Get Google Sheets API credentials from environment variables."""
try:
# Construct the service account info dictionary
service_account_info = {
"type": os.getenv("SERVICE_ACCOUNT_TYPE"),
"project_id": os.getenv("PROJECT_ID"),
"private_key_id": os.getenv("PRIVATE_KEY_ID"),
"private_key": os.getenv("PRIVATE_KEY").replace('\\n', '\n'),
"client_email": os.getenv("CLIENT_EMAIL"),
"client_id": os.getenv("CLIENT_ID"),
"auth_uri": os.getenv("AUTH_URI"),
"token_uri": os.getenv("TOKEN_URI"),
"auth_provider_x509_cert_url": os.getenv("AUTH_PROVIDER_X509_CERT_URL"),
"client_x509_cert_url": os.getenv("CLIENT_X509_CERT_URL"),
"universe_domain": os.getenv("UNIVERSE_DOMAIN")
}
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
creds = Credentials.from_service_account_info(service_account_info, scopes=scope)
return creds
except Exception as e:
print(f"Error getting credentials: {e}")
return None
# Select files based on coaching code
def select_files(coaching_code):
creds = get_credentials()
client = gspread.authorize(creds)
if coaching_code == "1919":
journal_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1EFf2lr4A10nt4RhIqxCD_fxe-l3sXH09II0TEkMmvhA/edit?gid=0#gid=0').worksheet('Sheet1')
panic_button_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1nFZGkCvRV6qS-mhsORhX3dxI0JSge32_UwWgWKl3eyw/edit?gid=0#gid=0').worksheet('Sheet1')
test_file = client.open_by_url('https://docs.google.com/spreadsheets/d/13PUHySUXWtKBusjugoe7Dbsm39PwBUfG4tGLipspIx4/edit?gid=0#gid=0').worksheet('Sheet1')
elif coaching_code == "1099":
journal_file = client.open_by_url('https://docs.google.com/spreadsheets/d/12UQzr7xy70-MvbKUuqM6YMUF-y2kY1rumX0vOj0hKXI/edit?gid=0#gid=0').worksheet('Sheet1')
panic_button_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1zaKSRKgf2Nd7lWIf315YzvQeTQ3gU_PIRIS_bEAhl90/edit?gid=0#gid=0').worksheet('Sheet1')
test_file = client.open_by_url('https://docs.google.com/spreadsheets/d/1ms_SdloQqlXO85NK_xExhHT0LEeLsth0VBmdHQt55jc/edit?gid=0#gid=0').worksheet('Sheet1')
else:
raise HTTPException(status_code=404, detail="Invalid coaching code")
return journal_file, panic_button_file, test_file
# Main route to get sorted scores
@app.post("/get_sorted_scores")
async def get_sorted_scores(data: CoachingCodeRequest):
journal_file, panic_button_file, test_file = select_files(data.coachingCode)
# Load data into DataFrames
journal_df = pd.DataFrame(journal_file.get_all_values())
panic_button_df = pd.DataFrame(panic_button_file.get_all_values())
test_df = pd.DataFrame(test_file.get_all_values())
# Processing logic
panic_data = []
for index, row in panic_button_df.iterrows():
user_id = row[0]
row_pairs = row[1:].dropna().to_list()[-5:]
for i in range(0, len(row_pairs), 2):
panic = row_pairs[i].upper().strip()
if pd.notna(panic):
panic_data.append({'user_id': user_id, 'panic_button': panic})
panic_df_processed = pd.DataFrame(panic_data)
test_data = []
for index, row in test_df.iterrows():
user_id = row[0]
row_pairs = row[1:].dropna().to_list()
chapter_scores = {}
for i in range(0, len(row_pairs), 2):
chapter = row_pairs[i].lower().strip()
score = row_pairs[i + 1]
if pd.notna(score):
if chapter not in chapter_scores:
chapter_scores[chapter] = []
chapter_scores[chapter].append(score)
for chapter, scores in chapter_scores.items():
last_5_scores = scores[-5:]
for score in last_5_scores:
test_data.append({'user_id': user_id, 'test_chapter': chapter, 'test_score': score})
test_df_processed = pd.DataFrame(test_data)
journal_data = []
for index, row in journal_df.iterrows():
user_id = row[0]
row_pairs = row[1:].dropna().to_list()[-10:]
for i in range(0, len(row_pairs), 2):
productivity_yes_no = row_pairs[i].lower().strip()
productivity_rate = row_pairs[i + 1]
if pd.notna(productivity_rate):
journal_data.append({'user_id': user_id, 'productivity_yes_no': productivity_yes_no, 'productivity_rate': productivity_rate})
journal_df_processed = pd.DataFrame(journal_data)
merged_journal_panic = pd.merge(panic_df_processed, journal_df_processed, on='user_id', how='outer')
merged_data = pd.merge(merged_journal_panic, test_df_processed, on='user_id', how='outer')
merged_data_cleaned = merged_data.dropna(subset=['productivity_yes_no', 'productivity_rate', 'panic_button', 'test_chapter'], how='all')
def process_group(group):
# Panic button counts
panic_button_series = group['panic_button'].dropna()
panic_button_dict = panic_button_series.value_counts().to_dict()
# Test scores aggregation
test_scores = group[['test_chapter', 'test_score']].dropna()
test_scores['test_score'] = pd.to_numeric(test_scores['test_score'], errors='coerce')
# Create the test_scores_dict excluding NaN values
test_scores_dict = test_scores.groupby('test_chapter')['test_score'].mean().dropna().to_dict()
return pd.Series({
'productivity_yes_no': group['productivity_yes_no'].iloc[0],
'productivity_rate': group['productivity_rate'].iloc[0],
'panic_button': panic_button_dict,
'test_scores': test_scores_dict
})
# Define scoring weights
academic_weights = {'BACKLOGS': -5, 'MISSED CLASSES': -4, 'NOT UNDERSTANDING': -3, 'BAD MARKS': -3, 'LACK OF MOTIVATION': -3}
non_academic_weights = {'EMOTIONAL FACTORS': -3, 'PROCRASTINATE': -2, 'LOST INTEREST': -4, 'LACK OF FOCUS': -2, 'GOALS NOT ACHIEVED': -2, 'LACK OF DISCIPLINE': -2}
max_weighted_panic_score = sum([max(academic_weights.values()) * 3, max(non_academic_weights.values()) * 3])
def calculate_potential_score(row):
if row['test_scores']:
avg_test_score = sum(row['test_scores'].values()) / len(row['test_scores'])
test_score_normalized = (avg_test_score / 40) * 70
else:
test_score_normalized = 0
student_panic_score = 0
if row['panic_button']:
for factor, count in row['panic_button'].items():
if factor in academic_weights:
student_panic_score += academic_weights[factor] * count
elif factor in non_academic_weights:
student_panic_score += non_academic_weights[factor] * count
else:
student_panic_score = 0
panic_score = 20 * (1 - (student_panic_score / max_weighted_panic_score) if max_weighted_panic_score != 0 else 1)
if pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'Yes':
if pd.notna(row['productivity_rate']):
journal_score = (float(row['productivity_rate']) / 10) * 10
else:
journal_score = 0
elif pd.notna(row['productivity_yes_no']) and row['productivity_yes_no'] == 'No':
if pd.notna(row['productivity_rate']):
journal_score = (float(row['productivity_rate']) / 10) * 5
else:
journal_score = 0
else:
journal_score = 0
total_potential_score = test_score_normalized + panic_score + journal_score
return total_potential_score
merged_df = merged_data_cleaned.groupby('user_id').apply(process_group).reset_index()
merged_df['potential_score'] = merged_df.apply(calculate_potential_score, axis=1)
merged_df['potential_score'] = merged_df['potential_score'].round(2)
sorted_df = merged_df[['user_id', 'potential_score']].sort_values(by='potential_score', ascending=False)
result = sorted_df.to_dict(orient="records")
return {"sorted_scores": result}
|