File size: 6,562 Bytes
fabe8c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f0e0ce
fabe8c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-
"""MiniProjectBDA_Review1.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1KQQu8_rON6eGoBJaX9ufEDEjuX_KJzN4

# **Title: Anomaly Detection for Energy Usage Optimization**

#**Problem Statement:**


The project aims to develop an anomaly detection model to predict whether the energy usage in a building is anomalous or not. The significance of this project lies in the fact that anomalous energy usage implies energy wastage, which can have both environmental and economic implications. By identifying and addressing such instances, we can significantly contribute to energy conservation and cost reduction.

# **Dataset Description**

**train.csv**

*building_id* - Unique building id code.

*timestamp* - When the measurement was taken

*meter_reading*- Electricity consumption in kWh.

*anomaly* - Whether this reading is anomalous (1) or not (0).
"""


from pyspark.sql import SparkSession
from pyspark.sql.functions import col, split, substring, when
from pyspark.sql.types import IntegerType
from datetime import datetime

spark = SparkSession.builder.appName("EnergyAnomalyDetection").getOrCreate()

train = spark.read.csv("train.csv", header=True, inferSchema=True)

train.show()

print("Shape:", (train.count(), len(train.columns)))

train.select([col(c).alias(c) for c in train.columns]).na.fill(0).show()

train = train.withColumn("new", split(train["timestamp"], " "))
train = train.withColumn("date", col("new")[0])
train = train.withColumn("time", substring(col("new")[1], 0, 2).cast(IntegerType()))
train = train.drop("new", "timestamp")
train.show()

from pyspark.sql.functions import mean
numeric_columns = [col_name for col_name, data_type in train.dtypes if data_type in ['double', 'float', 'int']]
mean_values = train.select([mean(col(column)).alias(column) for column in numeric_columns]).collect()[0].asDict()

for column in numeric_columns:
    train = train.withColumn(column, when(col(column).isNull(), mean_values[column]).otherwise(col(column)))

train.show()

train = train.withColumn("month", substring(col("date"), 6, 2).cast(IntegerType()))
train = train.withColumn("day", substring(col("date"), -2, 2).cast(IntegerType()))
train = train.drop("date")

train.show()

from pyspark.sql.functions import udf
import pyspark.sql.functions as F
@udf(IntegerType())
def weekend_or_weekday_udf(year, month, day):
    try:
        d = datetime(year, month, day)
        if d.weekday() > 4:
            return 1
        else:
            return 0
    except ValueError:
        return None

train = train.withColumn("weekend", weekend_or_weekday_udf(F.lit(2016), col("month"), col("day")))


train = train.withColumn("weekend", when(col("weekend").isNull(), 0).otherwise(col("weekend")))

train.show()

import matplotlib.pyplot as plt
from pyspark.sql import SparkSession
from pyspark.sql.functions import mean
import numpy as np

data = train.groupBy('weekend').agg(mean('meter_reading').alias('mean_meter_reading')).collect()

weekend_mean = data[1]['mean_meter_reading']
weekday_mean = data[0]['mean_meter_reading']

labels = ['Weekday Mean Usage', 'Weekend Mean Usage']
sizes = [weekday_mean, weekend_mean]
colors = plt.cm.Paired(np.arange(len(labels)))

plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%')
plt.axis('equal')

plt.show()

data = train.groupBy('month').agg(mean('meter_reading').alias('mean_meter_reading')).collect()

months = [row['month'] for row in data]
mean_readings = [row['mean_meter_reading'] for row in data]

plt.figure(figsize=(15, 5))
plt.bar(months, mean_readings)
plt.title('Mean usage monthly.', fontsize=20)
plt.xlabel('Month', fontsize=15)
plt.ylabel('Mean Meter Reading', fontsize=15)
plt.xticks(months)
plt.show()

data = train.groupBy('day').agg(mean('meter_reading').alias('mean_meter_reading')).collect()

days = [row['day'] for row in data]
mean_readings = [row['mean_meter_reading'] for row in data]

plt.figure(figsize=(15, 5))
plt.bar(days, mean_readings)
plt.title('Mean usage daily.', fontsize=20)
plt.xlabel('Day', fontsize=15)
plt.ylabel('Mean Meter Reading', fontsize=15)
plt.xticks(days)
plt.show()

neg = train.filter(train['anomaly'] == 0)
pos = train.filter(train['anomaly'] == 1)

neg_count = neg.count()
pos_count = pos.count()

print("Negative Shape:", neg_count)
print("Positive Shape:", pos_count)

train.show(5)

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.classification import LogisticRegression
from pyspark.sql.types import IntegerType

inputColumns = ['building_id', 'meter_reading', 'time', 'month', 'day', 'weekend']
outputColumn = "anomaly"


for col_name in inputColumns:
    train = train.withColumn(col_name, train[col_name].cast(IntegerType()))

vector_assembler = VectorAssembler(inputCols=inputColumns, outputCol="features")

lr = LogisticRegression(labelCol=outputColumn, featuresCol="features")

stages = [vector_assembler, lr]
pipeline = Pipeline(stages=stages)


(train_df, test_df) = train.randomSplit([0.8, 0.2], seed=10)


pipeline_model = pipeline.fit(train_df)

predictions = pipeline_model.transform(test_df)

predictions.show(5)

from pyspark.ml.evaluation import BinaryClassificationEvaluator

evaluator = BinaryClassificationEvaluator(labelCol="anomaly")
accuracy = evaluator.evaluate(predictions)
print("Accuracy: ",accuracy)

pipeline_model.write().overwrite().save("/content/trained_model")

import gradio as gr
from pyspark.ml import PipelineModel
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler


loaded_model = PipelineModel.load("trained_model")

def predict(building_id, meter_reading, time, month, day, weekend):

    user_input = spark.createDataFrame([(building_id, meter_reading, time, month, day, weekend)],
                                       ["building_id", "meter_reading", "time", "month", "day", "weekend"])


    input_columns = ["building_id", "meter_reading", "time", "month", "day", "weekend"]
    assembler = VectorAssembler(inputCols=input_columns, outputCol="features")
    user_input = assembler.transform(user_input)
    try:
      prediction_result = predictions.select("prediction").first()[0]
    except Exception as e:
      print("Error occurred during prediction:", e)
      prediction_result = None
    return prediction_result


iface = gr.Interface(fn=predict,
                     inputs=["number", "number", "number", "number", "number", "number"],
                     outputs="label")


iface.launch()