File size: 2,853 Bytes
88ae77c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import copy
import os

import numpy as np
import pytorch_lightning as pl
import torch
import torch.nn as nn
from einops import rearrange
from torchmetrics.functional import accuracy
from torchmetrics.functional.classification import multiclass_recall, multiclass_precision
from x_transformers import Encoder, Decoder

ON_EPOCH = True
ON_STEP = False
BATCH_SIZE = 64
TARGET_SIZE = (64, 64)
SPLIT_RATE = 0.8
ROOT_DIR_DATA = "/kaggle/input/ant-data-new/data"


class PatchEmbed(nn.Module):
    """Image to Patch Embedding"""

    def __init__(self, img_size=TARGET_SIZE[0], patch_size=4, in_chans=3, embed_dim=64):
        super().__init__()
        if isinstance(img_size, int):
            img_size = img_size, img_size
        if isinstance(patch_size, int):
            patch_size = patch_size, patch_size

        # calculate the number of patches
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])

        # convolutional layer to convert the image into patches
        self.conv = nn.Conv2d(
            in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
        )

    def forward(self, x):
        x = self.conv(x)
        # flatten the patches
        x = rearrange(x, 'b e h w -> b (h w) e')
        return x


class ViTIJEPA(nn.Module):
    def __init__(self, img_size, patch_size, in_chans, embed_dim, enc_depth, num_heads,
                 num_classes, post_emb_norm=False,
                 layer_dropout=0.):
        super().__init__()
        self.layer_dropout = layer_dropout
        self.patch_embed = PatchEmbed(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        self.num_tokens = self.patch_embed.patch_shape[0] * self.patch_embed.patch_shape[1]
        self.pos_embedding = nn.Parameter(torch.randn(1, self.num_tokens, embed_dim))
        self.post_emb_norm = nn.LayerNorm(embed_dim) if post_emb_norm else nn.Identity()
        self.student_encoder = Encoder(
            dim=embed_dim,
            heads=num_heads,
            depth=enc_depth,
            layer_dropout=self.layer_dropout,
            flash=True
        )

        self.average_pool = nn.AvgPool1d((embed_dim), stride=1)
        # mlp head
        self.mlp_head = nn.Sequential(
            nn.LayerNorm(self.num_tokens),
            nn.Linear(self.num_tokens, num_classes),
        )

    def forward(self, x):
        x = self.patch_embed(x)
        b, n, e = x.shape
        # add the positional embeddings
        x = x + self.pos_embedding
        # normalize the embeddings
        x = self.post_emb_norm(x)
        # if mode is test, we get return full embedding:
        x = self.student_encoder(x)

        x = self.average_pool(x)  # conduct average pool like in paper
        x = x.squeeze(-1)
        x = self.mlp_head(x)  # pass through mlp head
        return x