File size: 1,682 Bytes
0abf936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
from fastapi import FastAPI, Request
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Set Hugging Face cache directory
os.environ["HF_HOME"] = "/home/user/cache"

# Get Hugging Face API token
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
if not HF_API_TOKEN:
    raise ValueError("HF_API_TOKEN environment variable is not set!")

app = FastAPI()

# Load Falcon 7B model
MODEL_NAME = "SpiceyToad/demo-falc"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_API_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    use_auth_token=HF_API_TOKEN
)

# Ensure tokenizer has a padding token
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token  # Use the EOS token as the padding token

@app.post("/generate")
async def generate_text(request: Request):
    data = await request.json()
    prompt = data.get("prompt", "").strip()
    max_length = data.get("max_length", 50)

    if not prompt:
        return {"error": "Prompt is required!"}

    # Validate max_length
    max_length = min(max_length, model.config.max_position_embeddings)

    # Tokenize with padding and attention mask
    inputs = tokenizer(
        prompt,
        return_tensors="pt",
        padding=True,
        truncation=True,
        max_length=max_length
    ).to(model.device)

    # Generate response
    outputs = model.generate(
        inputs["input_ids"],
        attention_mask=inputs["attention_mask"],
        max_length=max_length
    )

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return {"generated_text": response}