File size: 8,054 Bytes
d5b2d81
 
 
b2efec6
 
69a84bc
7e978bb
0189af7
094584b
0189af7
e1807a7
8b1885c
7382070
e1807a7
8b1885c
 
e1807a7
8b1885c
e1807a7
 
7800d2e
e1807a7
8b1885c
 
 
 
 
7382070
8b1885c
 
 
 
e1807a7
1b2a38a
d5b2d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b1885c
d5b2d81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gc
import torch
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os

HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)

MODELS = {
    "athena-r3x-0625": {
        "name": "πŸ† Athena R3X",
        "sizes": {
            "0.6B": "Spestly/Athena-R3X-0.6B",
            "1.7B": "Spestly/Athena-R3X-1.7B"
        },
        "emoji": "πŸ†",
        "experimental": True,
        "is_vision": False,
        "system_prompt_env": "ATHENA_R3_V1",
    },
    "athena-r3-1024": {
        "name": "🦁 Athena R3",
        "sizes": {
            "1.5B": "Spestly/Athena-R3-1.5B",
        },
        "emoji": "🦁",
        "experimental": False,
        "is_vision": False,
        "system_prompt_env": "ATHENA_R3_V1",
    },
}

USER_PFP = "user.png"
AI_PFP = "ai_pfp.png"

st.set_page_config(
    page_title="Athena Model Inference",
    page_icon="🦁 ",
    layout="wide",
    menu_items={
        'Get Help': 'https://huggingface.co/collections/Spestly/athena-1-67623e58bfaadd3c2fcffb86',
        'Report a bug': 'https://huggingface.co/Spestly/Athena-R3-1.5B/discussions/new',
        'About': 'Athena Model Inference Platform'
    }
)

st.markdown(
    """
    <style>
    .stSlider > div > div > div > div {
        background-color: #1f78b4 !important;
    }
    .stButton > button {
        background-color: #1f78b4 !important;
        color: white !important;
        border: none !important;
    }
    .stButton > button:hover {
        background-color: #16609a !important;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

class AtlasInferenceApp:
    def __init__(self):
        if "current_model" not in st.session_state:
            st.session_state.current_model = {"tokenizer": None, "model": None, "config": None}
        if "chat_history" not in st.session_state:
            st.session_state.chat_history = []

    def clear_memory(self):
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()

    def load_model(self, model_key, model_size):
        try:
            self.clear_memory()

            if st.session_state.current_model["model"] is not None:
                del st.session_state.current_model["model"]
                del st.session_state.current_model["tokenizer"]
                self.clear_memory()

            model_path = MODELS[model_key]["sizes"][model_size]
            
            tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
            model = AutoModelForCausalLM.from_pretrained(
                model_path,
                device_map="auto",
                torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
                trust_remote_code=True,
                low_cpu_mem_usage=True
            )

            st.session_state.current_model.update({
                "tokenizer": tokenizer,
                "model": model,
                "config": {
                    "name": f"{MODELS[model_key]['name']} {model_size}",
                    "path": model_path,
                    "system_prompt": os.getenv(MODELS[model_key]["system_prompt_env"], "Default system prompt"),
                }
            })
            return f"βœ… {MODELS[model_key]['name']} {model_size} loaded successfully!"
        except Exception as e:
            return f"❌ Error: {str(e)}"

    def respond(self, message, max_tokens, temperature, top_p, top_k, image=None):
        if not st.session_state.current_model["model"] or not st.session_state.current_model["tokenizer"]:
            return "⚠️ Please select and load a model first"

        try:
            system_prompt = st.session_state.current_model["config"]["system_prompt"]
            if not system_prompt:
                return "⚠️ System prompt not found for the selected model."

            prompt = f"{system_prompt}\n\n### Instruction:\n{message}\n\n### Response:"

            inputs = st.session_state.current_model["tokenizer"](
                prompt,
                return_tensors="pt",
                max_length=512,
                truncation=True,
                padding=True
            )
            with torch.no_grad():
                output = st.session_state.current_model["model"].generate(
                    input_ids=inputs.input_ids,
                    attention_mask=inputs.attention_mask,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    top_p=top_p,
                    top_k=top_k,
                    do_sample=True,
                    pad_token_id=st.session_state.current_model["tokenizer"].pad_token_id,
                    eos_token_id=st.session_state.current_model["tokenizer"].eos_token_id,
                )
                response = st.session_state.current_model["tokenizer"].decode(output[0], skip_special_tokens=True)

            if prompt in response:
                response = response.replace(prompt, "").strip()

            return response
        except Exception as e:
            return f"⚠️ Generation Error: {str(e)}"
        finally:
            self.clear_memory()

    def main(self):
        st.title("πŸ¦‰ Athena")

        with st.sidebar:
            st.header("πŸ›  Model Selection")

            model_key = st.selectbox(
                "Choose Athena Variant",
                list(MODELS.keys()),
                format_func=lambda x: f"{MODELS[x]['name']} {'πŸ§ͺ' if MODELS[x]['experimental'] else ''}"
            )

            model_size = st.selectbox(
                "Choose Model Size",
                list(MODELS[model_key]["sizes"].keys())
            )

            if st.button("Load Model"):
                with st.spinner("Loading model... This may take a few minutes."):
                    status = self.load_model(model_key, model_size)
                    st.success(status)

            st.header("πŸ”§ Generation Parameters")
            max_tokens = st.slider("Max New Tokens", min_value=10, max_value=512, value=256, step=10)
            temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=0.4, step=0.1)
            top_p = st.slider("Top-P", min_value=0.1, max_value=1.0, value=0.9, step=0.1)
            top_k = st.slider("Top-K", min_value=1, max_value=100, value=50, step=1)

            if st.button("Clear Chat History"):
                st.session_state.chat_history = []
                st.rerun()


        for message in st.session_state.chat_history:
            with st.chat_message(
                message["role"],
                avatar=USER_PFP if message["role"] == "user" else AI_PFP
            ):
                st.markdown(message["content"])
                if "image" in message and message["image"]:
                    st.image(message["image"], caption="Uploaded Image", use_column_width=True)

        if prompt := st.chat_input("Message Athena..."):
            uploaded_image = None
            if MODELS[model_key]["is_vision"]:
                uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])

            st.session_state.chat_history.append({"role": "user", "content": prompt, "image": uploaded_image})
            with st.chat_message("user", avatar=USER_PFP):
                st.markdown(prompt)
                if uploaded_image:
                    st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)

            with st.chat_message("assistant", avatar=AI_PFP):
                with st.spinner("Generating response..."):
                    response = self.respond(prompt, max_tokens, temperature, top_p, top_k, image=uploaded_image)
                    st.markdown(response)

            st.session_state.chat_history.append({"role": "assistant", "content": response})

def run():
    try:
        app = AtlasInferenceApp()
        app.main()
    except Exception as e:
        st.error(f"⚠️ Application Error: {str(e)}")

if __name__ == "__main__":
    run()