Spaces:
Running
Running
File size: 8,054 Bytes
d5b2d81 b2efec6 69a84bc 7e978bb 0189af7 094584b 0189af7 e1807a7 8b1885c 7382070 e1807a7 8b1885c e1807a7 8b1885c e1807a7 7800d2e e1807a7 8b1885c 7382070 8b1885c e1807a7 1b2a38a d5b2d81 8b1885c d5b2d81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import gc
import torch
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
from huggingface_hub import login
import os
HF_TOKEN = os.getenv("HF_TOKEN")
login(token=HF_TOKEN)
MODELS = {
"athena-r3x-0625": {
"name": "π Athena R3X",
"sizes": {
"0.6B": "Spestly/Athena-R3X-0.6B",
"1.7B": "Spestly/Athena-R3X-1.7B"
},
"emoji": "π",
"experimental": True,
"is_vision": False,
"system_prompt_env": "ATHENA_R3_V1",
},
"athena-r3-1024": {
"name": "π¦ Athena R3",
"sizes": {
"1.5B": "Spestly/Athena-R3-1.5B",
},
"emoji": "π¦",
"experimental": False,
"is_vision": False,
"system_prompt_env": "ATHENA_R3_V1",
},
}
USER_PFP = "user.png"
AI_PFP = "ai_pfp.png"
st.set_page_config(
page_title="Athena Model Inference",
page_icon="π¦ ",
layout="wide",
menu_items={
'Get Help': 'https://huggingface.co/collections/Spestly/athena-1-67623e58bfaadd3c2fcffb86',
'Report a bug': 'https://huggingface.co/Spestly/Athena-R3-1.5B/discussions/new',
'About': 'Athena Model Inference Platform'
}
)
st.markdown(
"""
<style>
.stSlider > div > div > div > div {
background-color: #1f78b4 !important;
}
.stButton > button {
background-color: #1f78b4 !important;
color: white !important;
border: none !important;
}
.stButton > button:hover {
background-color: #16609a !important;
}
</style>
""",
unsafe_allow_html=True,
)
class AtlasInferenceApp:
def __init__(self):
if "current_model" not in st.session_state:
st.session_state.current_model = {"tokenizer": None, "model": None, "config": None}
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
def clear_memory(self):
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def load_model(self, model_key, model_size):
try:
self.clear_memory()
if st.session_state.current_model["model"] is not None:
del st.session_state.current_model["model"]
del st.session_state.current_model["tokenizer"]
self.clear_memory()
model_path = MODELS[model_key]["sizes"][model_size]
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
st.session_state.current_model.update({
"tokenizer": tokenizer,
"model": model,
"config": {
"name": f"{MODELS[model_key]['name']} {model_size}",
"path": model_path,
"system_prompt": os.getenv(MODELS[model_key]["system_prompt_env"], "Default system prompt"),
}
})
return f"β
{MODELS[model_key]['name']} {model_size} loaded successfully!"
except Exception as e:
return f"β Error: {str(e)}"
def respond(self, message, max_tokens, temperature, top_p, top_k, image=None):
if not st.session_state.current_model["model"] or not st.session_state.current_model["tokenizer"]:
return "β οΈ Please select and load a model first"
try:
system_prompt = st.session_state.current_model["config"]["system_prompt"]
if not system_prompt:
return "β οΈ System prompt not found for the selected model."
prompt = f"{system_prompt}\n\n### Instruction:\n{message}\n\n### Response:"
inputs = st.session_state.current_model["tokenizer"](
prompt,
return_tensors="pt",
max_length=512,
truncation=True,
padding=True
)
with torch.no_grad():
output = st.session_state.current_model["model"].generate(
input_ids=inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
do_sample=True,
pad_token_id=st.session_state.current_model["tokenizer"].pad_token_id,
eos_token_id=st.session_state.current_model["tokenizer"].eos_token_id,
)
response = st.session_state.current_model["tokenizer"].decode(output[0], skip_special_tokens=True)
if prompt in response:
response = response.replace(prompt, "").strip()
return response
except Exception as e:
return f"β οΈ Generation Error: {str(e)}"
finally:
self.clear_memory()
def main(self):
st.title("π¦ Athena")
with st.sidebar:
st.header("π Model Selection")
model_key = st.selectbox(
"Choose Athena Variant",
list(MODELS.keys()),
format_func=lambda x: f"{MODELS[x]['name']} {'π§ͺ' if MODELS[x]['experimental'] else ''}"
)
model_size = st.selectbox(
"Choose Model Size",
list(MODELS[model_key]["sizes"].keys())
)
if st.button("Load Model"):
with st.spinner("Loading model... This may take a few minutes."):
status = self.load_model(model_key, model_size)
st.success(status)
st.header("π§ Generation Parameters")
max_tokens = st.slider("Max New Tokens", min_value=10, max_value=512, value=256, step=10)
temperature = st.slider("Temperature", min_value=0.1, max_value=2.0, value=0.4, step=0.1)
top_p = st.slider("Top-P", min_value=0.1, max_value=1.0, value=0.9, step=0.1)
top_k = st.slider("Top-K", min_value=1, max_value=100, value=50, step=1)
if st.button("Clear Chat History"):
st.session_state.chat_history = []
st.rerun()
for message in st.session_state.chat_history:
with st.chat_message(
message["role"],
avatar=USER_PFP if message["role"] == "user" else AI_PFP
):
st.markdown(message["content"])
if "image" in message and message["image"]:
st.image(message["image"], caption="Uploaded Image", use_column_width=True)
if prompt := st.chat_input("Message Athena..."):
uploaded_image = None
if MODELS[model_key]["is_vision"]:
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
st.session_state.chat_history.append({"role": "user", "content": prompt, "image": uploaded_image})
with st.chat_message("user", avatar=USER_PFP):
st.markdown(prompt)
if uploaded_image:
st.image(uploaded_image, caption="Uploaded Image", use_column_width=True)
with st.chat_message("assistant", avatar=AI_PFP):
with st.spinner("Generating response..."):
response = self.respond(prompt, max_tokens, temperature, top_p, top_k, image=uploaded_image)
st.markdown(response)
st.session_state.chat_history.append({"role": "assistant", "content": response})
def run():
try:
app = AtlasInferenceApp()
app.main()
except Exception as e:
st.error(f"β οΈ Application Error: {str(e)}")
if __name__ == "__main__":
run() |