File size: 29,670 Bytes
f795275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
# AI-Powered Code Review Assistant
# Author: Spencer Purdy
# Description: An intelligent code review tool that analyzes Python and JavaScript code
# for best practices, security vulnerabilities, and performance improvements using
# CodeT5 and advanced pattern analysis.

# Import required libraries
import subprocess
import sys
import re
import ast
import json
from typing import List, Dict, Tuple

# Install required packages if not already installed
def install_packages():
    """Install required packages for the application"""
    packages = ['gradio', 'transformers', 'torch', 'sentencepiece']
    for package in packages:
        subprocess.check_call([sys.executable, '-m', 'pip', 'install', package, '-q'])

# Try importing, install if needed
try:
    import gradio as gr
    from transformers import RobertaTokenizer, T5ForConditionalGeneration
    import torch
except ImportError:
    print("Installing required packages...")
    install_packages()
    import gradio as gr
    from transformers import RobertaTokenizer, T5ForConditionalGeneration
    import torch

# Initialize the CodeT5 model for AI-powered code analysis
print("Loading CodeT5 model...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = RobertaTokenizer.from_pretrained('Salesforce/codet5-base')
model = T5ForConditionalGeneration.from_pretrained('Salesforce/codet5-base').to(device)
model.eval()
print(f"Model loaded successfully on {device}!")

class CodeAnalyzer:
    """
    Main class for analyzing code quality, security, and performance.
    Uses pattern matching and AI to identify issues in Python and JavaScript code.
    """
    
    def __init__(self):
        """Initialize analyzer with predefined patterns for security, performance, and best practices"""
        
        # Security vulnerability patterns for each language
        self.security_patterns = {
            'python': {
                'sql_injection': r'(execute|executemany)\s*\(\s*["\'].*%[s|d].*["\'].*%',
                'command_injection': r'(os\.system|subprocess\.call|subprocess\.run)\s*\([^)]*\+[^)]*\)',
                'eval_usage': r'\beval\s*\(',
                'pickle_usage': r'pickle\.(load|loads)\s*\(',
                'hardcoded_secrets': r'(password|api_key|secret|token)\s*=\s*["\'][^"\']+["\']',
                'weak_random': r'random\.(random|randint|choice)\s*\(',
            },
            'javascript': {
                'eval_usage': r'\beval\s*\(',
                'innerHTML_xss': r'\.innerHTML\s*=',
                'sql_injection': r'query\s*\(\s*["\'].*\+.*["\']',
                'hardcoded_secrets': r'(password|apiKey|secret|token)\s*=\s*["\'][^"\']+["\']',
                'weak_comparison': r'==\s*(null|undefined)',
                'unsafe_regex': r'new\s+RegExp\s*\([^)]*\+[^)]*\)',
            }
        }
        
        # Performance issue patterns
        self.performance_patterns = {
            'python': {
                'nested_loops': r'for\s+.*:\s*\n\s*for\s+.*:',
                'string_concatenation': r'["\'].*["\']\s*\+\s*["\'].*["\']',
                'list_comprehension_opportunity': r'for\s+.*:\s*\n\s*.*\.append\(',
                'inefficient_contains': r'if\s+.*\s+in\s+.*list\(',
            },
            'javascript': {
                'nested_loops': r'for\s*\([^)]*\)\s*{\s*for\s*\(',
                'dom_in_loop': r'for\s*\([^)]*\)\s*{[^}]*document\.(getElementById|querySelector)',
                'string_concatenation': r'["\'].*["\']\s*\+\s*["\'].*["\']',
                'inefficient_array_method': r'\.(forEach|map|filter)\s*\([^)]*\)\s*\.(forEach|map|filter)',
            }
        }
        
        # Best practice checkers (mix of regex patterns and callable functions)
        self.best_practices = {
            'python': {
                'missing_docstring': self._check_missing_docstring,
                'long_functions': self._check_long_functions,
                'naming_convention': self._check_python_naming,
                'unused_variables': self._check_unused_variables,
            },
            'javascript': {
                'var_usage': r'\bvar\s+',
                'missing_semicolon': r'[^;]\s*\n\s*(let|const|return|if|for|while)',
                'console_log': r'console\.(log|error|warn)\(',
                'naming_convention': self._check_js_naming,
            }
        }
    
    def analyze_code(self, code: str, language: str) -> Dict[str, List[Dict]]:
        """
        Main analysis function that runs all checks on the provided code
        
        Args:
            code: Source code string to analyze
            language: Programming language ('python' or 'javascript')
            
        Returns:
            Dictionary with categorized issues: security, performance, best_practices, ai_suggestions
        """
        results = {
            'security': [],
            'performance': [],
            'best_practices': [],
            'ai_suggestions': []
        }
        
        # Run security analysis using regex patterns
        for issue_name, pattern in self.security_patterns.get(language, {}).items():
            if isinstance(pattern, str) and re.search(pattern, code, re.IGNORECASE):
                results['security'].append({
                    'type': issue_name.replace('_', ' ').title(),
                    'severity': 'high' if issue_name in ['sql_injection', 'command_injection', 'eval_usage'] else 'medium',
                    'message': self._get_security_message(issue_name),
                    'line': self._find_line_number(code, pattern)
                })
        
        # Run performance analysis
        for issue_name, pattern in self.performance_patterns.get(language, {}).items():
            if isinstance(pattern, str) and re.search(pattern, code, re.MULTILINE):
                results['performance'].append({
                    'type': issue_name.replace('_', ' ').title(),
                    'severity': 'medium',
                    'message': self._get_performance_message(issue_name),
                    'line': self._find_line_number(code, pattern)
                })
        
        # Run best practices analysis (can be regex or function-based)
        for issue_name, checker in self.best_practices.get(language, {}).items():
            if callable(checker):
                issues = checker(code)
                results['best_practices'].extend(issues)
            elif isinstance(checker, str) and re.search(checker, code):
                results['best_practices'].append({
                    'type': issue_name.replace('_', ' ').title(),
                    'severity': 'low',
                    'message': self._get_best_practice_message(issue_name),
                    'line': self._find_line_number(code, checker)
                })
        
        # Get AI-powered suggestions using CodeT5
        ai_suggestions = self._get_ai_suggestions(code, language)
        if ai_suggestions:
            results['ai_suggestions'] = ai_suggestions
        
        return results
    
    def _check_missing_docstring(self, code: str) -> List[Dict]:
        """
        Check Python code for functions and classes missing docstrings
        Uses AST parsing to analyze code structure
        """
        issues = []
        try:
            tree = ast.parse(code)
            for node in ast.walk(tree):
                if isinstance(node, (ast.FunctionDef, ast.ClassDef)):
                    if not ast.get_docstring(node):
                        issues.append({
                            'type': 'Missing Docstring',
                            'severity': 'low',
                            'message': f'Function/Class "{node.name}" should have a docstring explaining its purpose',
                            'line': node.lineno
                        })
        except:
            # If AST parsing fails, skip this check
            pass
        return issues
    
    def _check_long_functions(self, code: str) -> List[Dict]:
        """
        Identify functions that exceed recommended length (20 lines)
        Long functions are harder to understand and maintain
        """
        issues = []
        try:
            tree = ast.parse(code)
            for node in ast.walk(tree):
                if isinstance(node, ast.FunctionDef):
                    func_lines = node.end_lineno - node.lineno
                    if func_lines > 20:
                        issues.append({
                            'type': 'Long Function',
                            'severity': 'medium',
                            'message': f'Function "{node.name}" is {func_lines} lines long. Consider breaking it into smaller functions.',
                            'line': node.lineno
                        })
        except:
            pass
        return issues
    
    def _check_python_naming(self, code: str) -> List[Dict]:
        """Check for Python naming convention violations (should use snake_case)"""
        issues = []
        camel_case_pattern = r'\b[a-z]+[A-Z]\w*\s*='
        matches = re.finditer(camel_case_pattern, code)
        for match in matches:
            issues.append({
                'type': 'Naming Convention',
                'severity': 'low',
                'message': 'Use snake_case for variable names in Python (e.g., my_variable instead of myVariable)',
                'line': code[:match.start()].count('\n') + 1
            })
        return issues
    
    def _check_js_naming(self, code: str) -> List[Dict]:
        """Check for JavaScript naming convention violations (should use camelCase)"""
        issues = []
        snake_case_pattern = r'(let|const|var)\s+[a-z]+_[a-z]+\s*='
        matches = re.finditer(snake_case_pattern, code)
        for match in matches:
            issues.append({
                'type': 'Naming Convention',
                'severity': 'low',
                'message': 'Use camelCase for variable names in JavaScript (e.g., myVariable instead of my_variable)',
                'line': code[:match.start()].count('\n') + 1
            })
        return issues
    
    def _check_unused_variables(self, code: str) -> List[Dict]:
        """
        Detect variables that are assigned but never used in Python code
        Unused variables can indicate dead code or incomplete refactoring
        """
        issues = []
        try:
            tree = ast.parse(code)
            assigned_vars = set()
            used_vars = set()
            
            # Walk AST to find assignments and variable usage
            for node in ast.walk(tree):
                if isinstance(node, ast.Assign):
                    for target in node.targets:
                        if isinstance(target, ast.Name):
                            assigned_vars.add(target.id)
                elif isinstance(node, ast.Name) and isinstance(node.ctx, ast.Load):
                    used_vars.add(node.id)
            
            # Find variables that are assigned but never used
            unused = assigned_vars - used_vars - {'_'}  # Exclude underscore
            for var in unused:
                issues.append({
                    'type': 'Unused Variable',
                    'severity': 'low',
                    'message': f'Variable "{var}" is defined but never used',
                    'line': 0  # Line number would require more complex analysis
                })
        except:
            pass
        return issues
    
    def _find_line_number(self, code: str, pattern: str) -> int:
        """Find the line number where a regex pattern first matches"""
        match = re.search(pattern, code, re.MULTILINE | re.IGNORECASE)
        if match:
            return code[:match.start()].count('\n') + 1
        return 0
    
    def _get_security_message(self, issue_type: str) -> str:
        """Return detailed explanation for security issues"""
        messages = {
            'sql_injection': 'Potential SQL injection vulnerability. Use parameterized queries or prepared statements instead of string concatenation.',
            'command_injection': 'Potential command injection. Never use user input directly in system commands. Sanitize and validate all inputs.',
            'eval_usage': 'Using eval() is dangerous and can lead to code injection. Consider using ast.literal_eval() or alternative approaches.',
            'pickle_usage': 'Pickle can execute arbitrary code during deserialization. Only unpickle data from trusted sources.',
            'hardcoded_secrets': 'Hardcoded credentials detected. Use environment variables or secure configuration management.',
            'weak_random': 'Using non-cryptographic randomness for security. Use secrets module for tokens, passwords, or security-sensitive operations.',
            'innerHTML_xss': 'Setting innerHTML with user data can lead to XSS attacks. Use textContent or properly sanitize input.',
            'weak_comparison': 'Use === instead of == to avoid JavaScript type coercion issues.',
            'unsafe_regex': 'Dynamic regex creation can lead to ReDoS attacks. Validate and escape user input carefully.',
        }
        return messages.get(issue_type, 'Security issue detected.')
    
    def _get_performance_message(self, issue_type: str) -> str:
        """Return detailed explanation for performance issues"""
        messages = {
            'nested_loops': 'Nested loops can have O(nΒ²) complexity. Consider using more efficient algorithms or data structures like sets or dictionaries.',
            'string_concatenation': 'String concatenation in loops is inefficient. Use join() in Python or template literals in JavaScript.',
            'list_comprehension_opportunity': 'This loop pattern could be replaced with a more efficient and readable list comprehension.',
            'inefficient_contains': 'Checking membership in a list is O(n). Consider using a set for O(1) lookups if checking multiple times.',
            'dom_in_loop': 'DOM manipulation inside loops causes reflows. Batch operations or use DocumentFragment for better performance.',
            'inefficient_array_method': 'Chaining array methods creates intermediate arrays. Consider combining operations or using a single reduce().',
        }
        return messages.get(issue_type, 'Performance issue detected.')
    
    def _get_best_practice_message(self, issue_type: str) -> str:
        """Return detailed explanation for best practice violations"""
        messages = {
            'var_usage': 'Use let or const instead of var for block scoping and to prevent hoisting issues.',
            'missing_semicolon': 'Missing semicolon. While JavaScript has ASI, explicit semicolons prevent potential errors.',
            'console_log': 'Remove console statements before production deployment or use a proper logging library.',
        }
        return messages.get(issue_type, 'Best practice violation detected.')
    
    def _get_ai_suggestions(self, code: str, language: str) -> List[Dict]:
        """
        Generate AI-powered code improvement suggestions using CodeT5 model
        Provides high-level insights beyond pattern matching
        """
        suggestions = []
        
        try:
            # Extract function names and analyze code structure
            if language == 'python':
                # Analyze Python code structure
                try:
                    tree = ast.parse(code)
                    functions = [node.name for node in ast.walk(tree) if isinstance(node, ast.FunctionDef)]
                    classes = [node.name for node in ast.walk(tree) if isinstance(node, ast.ClassDef)]
                    
                    # Generate suggestions based on code structure
                    if functions:
                        # Create a summarization prompt for CodeT5
                        prompt = f"summarize python: {code[:200]}"
                        inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
                        
                        with torch.no_grad():
                            outputs = model.generate(
                                inputs.input_ids,
                                max_length=60,
                                num_beams=4,
                                early_stopping=True,
                                temperature=0.7
                            )
                        
                        summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
                        
                        # Add meaningful suggestion based on analysis
                        if 'database' in code.lower() or 'query' in code.lower():
                            suggestions.append({
                                'type': 'Architecture Suggestion',
                                'severity': 'info',
                                'message': 'Consider implementing a data access layer or using an ORM like SQLAlchemy to abstract database operations and prevent SQL injection.',
                                'line': 0
                            })
                        
                        if len(functions) > 3:
                            suggestions.append({
                                'type': 'Code Organization',
                                'severity': 'info',
                                'message': f'This code contains {len(functions)} functions. Consider organizing related functions into classes for better code organization.',
                                'line': 0
                            })
                except:
                    pass
                
                # Language-specific suggestions
                if 'for i in range(len(' in code:
                    suggestions.append({
                        'type': 'Pythonic Code',
                        'severity': 'info',
                        'message': 'Use enumerate() for index-value iteration: for i, item in enumerate(list) instead of range(len())',
                        'line': 0
                    })
                
                if re.search(r'except\s*:', code):
                    suggestions.append({
                        'type': 'Error Handling',
                        'severity': 'info',
                        'message': 'Avoid bare except clauses. Specify exception types for better error handling.',
                        'line': 0
                    })
                    
            elif language == 'javascript':
                # JavaScript-specific AI suggestions
                if 'callback' in code.lower() and 'function' in code:
                    suggestions.append({
                        'type': 'Modern JavaScript',
                        'severity': 'info',
                        'message': 'Consider using Promises or async/await instead of callbacks for better readability and error handling.',
                        'line': 0
                    })
                
                if 'getElementById' in code and code.count('getElementById') > 2:
                    suggestions.append({
                        'type': 'Performance Tip',
                        'severity': 'info',
                        'message': 'Cache DOM references when accessing the same element multiple times to improve performance.',
                        'line': 0
                    })
                
                # Use CodeT5 for JavaScript analysis
                prompt = f"summarize javascript: {code[:200]}"
                inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True).to(device)
                
                with torch.no_grad():
                    outputs = model.generate(
                        inputs.input_ids,
                        max_length=60,
                        num_beams=4,
                        early_stopping=True,
                        temperature=0.7
                    )
                
                summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
                
                if 'array' in code.lower() or 'foreach' in code.lower():
                    suggestions.append({
                        'type': 'Functional Programming',
                        'severity': 'info',
                        'message': 'Consider using functional array methods (map, filter, reduce) for cleaner and more expressive code.',
                        'line': 0
                    })
            
            # General suggestions for both languages
            lines = code.split('\n')
            if max(len(line) for line in lines if line.strip()) > 100:
                suggestions.append({
                    'type': 'Code Readability',
                    'severity': 'info',
                    'message': 'Some lines exceed 100 characters. Consider breaking long lines for better readability.',
                    'line': 0
                })
            
            # Check for code complexity
            if code.count('if') + code.count('else') + code.count('elif') > 5:
                suggestions.append({
                    'type': 'Complexity Warning',
                    'severity': 'info',
                    'message': 'High conditional complexity detected. Consider refactoring using early returns or extracting complex logic into separate functions.',
                    'line': 0
                })
                
        except Exception as e:
            # Don't fail the entire analysis if AI suggestions fail
            print(f"AI suggestion generation note: {e}")
        
        return suggestions

def format_results(results: Dict[str, List[Dict]]) -> str:
    """
    Format analysis results into a readable markdown report
    Uses emojis and formatting for clear visual hierarchy
    """
    if not any(results.values()):
        return "βœ… **Excellent!** Your code looks great - no significant issues found."
    
    output = []
    
    # Security section (highest priority)
    if results['security']:
        output.append("## πŸ”’ Security Issues")
        output.append("*These require immediate attention:*\n")
        for issue in results['security']:
            severity_emoji = "πŸ”΄" if issue['severity'] == 'high' else "🟑"
            output.append(f"{severity_emoji} **{issue['type']}** (Line {issue['line']})")
            output.append(f"   β†’ {issue['message']}\n")
    
    # Performance section
    if results['performance']:
        output.append("## ⚑ Performance Issues")
        output.append("*Optimize these for better efficiency:*\n")
        for issue in results['performance']:
            output.append(f"🟑 **{issue['type']}** (Line {issue['line']})")
            output.append(f"   β†’ {issue['message']}\n")
    
    # Best practices section
    if results['best_practices']:
        output.append("## πŸ“ Best Practices")
        output.append("*Follow these for cleaner, more maintainable code:*\n")
        for issue in results['best_practices']:
            output.append(f"πŸ”΅ **{issue['type']}** (Line {issue['line']})")
            output.append(f"   β†’ {issue['message']}\n")
    
    # AI suggestions section
    if results['ai_suggestions']:
        output.append("## πŸ€– AI-Powered Insights")
        output.append("*Advanced suggestions from CodeT5 analysis:*\n")
        for suggestion in results['ai_suggestions']:
            output.append(f"πŸ’‘ **{suggestion['type']}**: {suggestion['message']}\n")
    
    # Summary statistics
    total_issues = sum(len(v) for v in results.values())
    high_severity = sum(1 for v in results['security'] if v['severity'] == 'high')
    
    output.append("---")
    output.append(f"**πŸ“Š Summary**: {total_issues} total suggestions found")
    if high_severity > 0:
        output.append(f"**⚠️ Critical**: {high_severity} high-severity security issues need immediate attention!")
    
    return "\n".join(output)

def analyze_code_handler(code: str, language: str) -> str:
    """
    Main handler function called by Gradio interface
    Coordinates the analysis and formats results for display
    """
    if not code.strip():
        return "❗ Please enter some code to analyze."
    
    # Create analyzer instance
    analyzer = CodeAnalyzer()
    language_key = language.lower()
    
    # Validate language selection
    if language_key not in ['python', 'javascript']:
        return "⚠️ Currently supporting Python and JavaScript. More languages coming soon!"
    
    try:
        # Run analysis
        results = analyzer.analyze_code(code, language_key)
        # Format and return results
        return format_results(results)
    except Exception as e:
        return f"❌ An error occurred during analysis: {str(e)}\n\nPlease check your code syntax and try again."

def create_interface():
    """
    Create and configure the Gradio web interface
    Provides an intuitive UI for code analysis with examples
    """
    
    # Example code snippets demonstrating various issues
    python_example = '''def process_user_data(user_id):
    # Fetch user data from database
    query = "SELECT * FROM users WHERE id = " + user_id
    result = db.execute(query)
    
    password = "admin123"
    
    data = []
    for row in result:
        data.append(row)
    
    # Process each item
    for i in range(len(data)):
        if data[i]['status'] == True:
            print(data[i])
    
    return data'''
    
    javascript_example = '''function fetchUserData(userId) {
    var apiKey = "sk-1234567890abcdef";
    
    // Get user element
    for (var i = 0; i < users.length; i++) {
        document.getElementById('user-' + i).innerHTML = users[i].name;
    }
    
    // Check user status
    if (userStatus == null) {
        console.log("User not found");
    }
    
    var query = "SELECT * FROM users WHERE id = " + userId;
    return db.query(query)
}'''
    
    # Build Gradio interface with custom theme
    with gr.Blocks(title="AI Code Review Assistant", theme=gr.themes.Soft()) as interface:
        # Header section
        gr.Markdown("""
        # πŸ€– AI-Powered Code Review Assistant
        
        **Instantly analyze your code for security vulnerabilities, performance issues, and best practices!**
        
        This tool uses advanced pattern matching and the CodeT5 AI model to provide comprehensive code analysis for Python and JavaScript.
        
        ### ✨ Features
        - πŸ”’ **Security Analysis**: Detect SQL injection, XSS, hardcoded secrets, and more
        - ⚑ **Performance Optimization**: Identify inefficient patterns and algorithms
        - πŸ“ **Best Practices**: Ensure clean, maintainable code following language conventions
        - πŸ€– **AI Insights**: Get intelligent suggestions powered by CodeT5 transformer model
        """)
        
        # Main content area with two columns
        with gr.Row():
            # Left column - Input
            with gr.Column():
                code_input = gr.Code(
                    label="πŸ“ Enter your code here",
                    language="python",
                    lines=15,
                    value=python_example
                )
                
                language_select = gr.Radio(
                    choices=["Python", "JavaScript"],
                    value="Python",
                    label="πŸ”€ Select Language"
                )
                
                analyze_btn = gr.Button("πŸ” Analyze Code", variant="primary", size="lg")
                
                # Example section
                gr.Examples(
                    examples=[
                        [python_example, "Python"],
                        [javascript_example, "JavaScript"]
                    ],
                    inputs=[code_input, language_select],
                    label="πŸ“š Try These Examples"
                )
            
            # Right column - Output
            with gr.Column():
                output = gr.Markdown(
                    label="πŸ“Š Analysis Results", 
                    value="*Your analysis results will appear here...*"
                )
        
        # Footer with instructions and attribution
        gr.Markdown("""
        ---
        ### 🎯 How to Use
        1. **Paste** your Python or JavaScript code in the editor
        2. **Select** the appropriate programming language
        3. **Click** "Analyze Code" to run the analysis
        4. **Review** the categorized feedback and improve your code!
        
        ### πŸ’‘ Tips
        - The tool works best with complete functions or code blocks
        - Line numbers help you quickly locate issues in your code
        - Security issues (πŸ”΄) should be fixed immediately
        - Use the AI insights for high-level code improvements
        
        ---
        πŸ‘¨β€πŸ’» **Created by Spencer Purdy** | Computer Science @ Auburn University  
        [GitHub](https://github.com/spencercpurdy) | [LinkedIn](https://linkedin.com/in/spencerpurdy) | [Hugging Face](https://huggingface.co/spencercpurdy)
        """)
        
        # Connect the analyze button to the handler function
        analyze_btn.click(
            fn=analyze_code_handler,
            inputs=[code_input, language_select],
            outputs=output
        )
    
    return interface

# Main execution block
if __name__ == "__main__":
    # Create and launch the Gradio interface
    interface = create_interface()
    
    # Launch with sharing enabled for easy access
    interface.launch(debug=True, share=True)