File size: 8,135 Bytes
3f9c56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Tuple

import torch
from torch import nn as nn
from torch.autograd import Function

from ..utils import ext_loader
from .ball_query import ball_query
from .knn import knn

ext_module = ext_loader.load_ext(
    '_ext', ['group_points_forward', 'group_points_backward'])


class QueryAndGroup(nn.Module):
    """Groups points with a ball query of radius.

    Args:
        max_radius (float): The maximum radius of the balls.
            If None is given, we will use kNN sampling instead of ball query.
        sample_num (int): Maximum number of features to gather in the ball.
        min_radius (float, optional): The minimum radius of the balls.
            Default: 0.
        use_xyz (bool, optional): Whether to use xyz.
            Default: True.
        return_grouped_xyz (bool, optional): Whether to return grouped xyz.
            Default: False.
        normalize_xyz (bool, optional): Whether to normalize xyz.
            Default: False.
        uniform_sample (bool, optional): Whether to sample uniformly.
            Default: False
        return_unique_cnt (bool, optional): Whether to return the count of
            unique samples. Default: False.
        return_grouped_idx (bool, optional): Whether to return grouped idx.
            Default: False.
    """

    def __init__(self,
                 max_radius,
                 sample_num,
                 min_radius=0,
                 use_xyz=True,
                 return_grouped_xyz=False,
                 normalize_xyz=False,
                 uniform_sample=False,
                 return_unique_cnt=False,
                 return_grouped_idx=False):
        super().__init__()
        self.max_radius = max_radius
        self.min_radius = min_radius
        self.sample_num = sample_num
        self.use_xyz = use_xyz
        self.return_grouped_xyz = return_grouped_xyz
        self.normalize_xyz = normalize_xyz
        self.uniform_sample = uniform_sample
        self.return_unique_cnt = return_unique_cnt
        self.return_grouped_idx = return_grouped_idx
        if self.return_unique_cnt:
            assert self.uniform_sample, \
                'uniform_sample should be True when ' \
                'returning the count of unique samples'
        if self.max_radius is None:
            assert not self.normalize_xyz, \
                'can not normalize grouped xyz when max_radius is None'

    def forward(self, points_xyz, center_xyz, features=None):
        """
        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            center_xyz (Tensor): (B, npoint, 3) coordinates of the centriods.
            features (Tensor): (B, C, N) Descriptors of the features.

        Returns:
            Tensor: (B, 3 + C, npoint, sample_num) Grouped feature.
        """
        # if self.max_radius is None, we will perform kNN instead of ball query
        # idx is of shape [B, npoint, sample_num]
        if self.max_radius is None:
            idx = knn(self.sample_num, points_xyz, center_xyz, False)
            idx = idx.transpose(1, 2).contiguous()
        else:
            idx = ball_query(self.min_radius, self.max_radius, self.sample_num,
                             points_xyz, center_xyz)

        if self.uniform_sample:
            unique_cnt = torch.zeros((idx.shape[0], idx.shape[1]))
            for i_batch in range(idx.shape[0]):
                for i_region in range(idx.shape[1]):
                    unique_ind = torch.unique(idx[i_batch, i_region, :])
                    num_unique = unique_ind.shape[0]
                    unique_cnt[i_batch, i_region] = num_unique
                    sample_ind = torch.randint(
                        0,
                        num_unique, (self.sample_num - num_unique, ),
                        dtype=torch.long)
                    all_ind = torch.cat((unique_ind, unique_ind[sample_ind]))
                    idx[i_batch, i_region, :] = all_ind

        xyz_trans = points_xyz.transpose(1, 2).contiguous()
        # (B, 3, npoint, sample_num)
        grouped_xyz = grouping_operation(xyz_trans, idx)
        grouped_xyz_diff = grouped_xyz - \
            center_xyz.transpose(1, 2).unsqueeze(-1)  # relative offsets
        if self.normalize_xyz:
            grouped_xyz_diff /= self.max_radius

        if features is not None:
            grouped_features = grouping_operation(features, idx)
            if self.use_xyz:
                # (B, C + 3, npoint, sample_num)
                new_features = torch.cat([grouped_xyz_diff, grouped_features],
                                         dim=1)
            else:
                new_features = grouped_features
        else:
            assert (self.use_xyz
                    ), 'Cannot have not features and not use xyz as a feature!'
            new_features = grouped_xyz_diff

        ret = [new_features]
        if self.return_grouped_xyz:
            ret.append(grouped_xyz)
        if self.return_unique_cnt:
            ret.append(unique_cnt)
        if self.return_grouped_idx:
            ret.append(idx)
        if len(ret) == 1:
            return ret[0]
        else:
            return tuple(ret)


class GroupAll(nn.Module):
    """Group xyz with feature.

    Args:
        use_xyz (bool): Whether to use xyz.
    """

    def __init__(self, use_xyz: bool = True):
        super().__init__()
        self.use_xyz = use_xyz

    def forward(self,
                xyz: torch.Tensor,
                new_xyz: torch.Tensor,
                features: torch.Tensor = None):
        """
        Args:
            xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            new_xyz (Tensor): new xyz coordinates of the features.
            features (Tensor): (B, C, N) features to group.

        Returns:
            Tensor: (B, C + 3, 1, N) Grouped feature.
        """
        grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
        if features is not None:
            grouped_features = features.unsqueeze(2)
            if self.use_xyz:
                # (B, 3 + C, 1, N)
                new_features = torch.cat([grouped_xyz, grouped_features],
                                         dim=1)
            else:
                new_features = grouped_features
        else:
            new_features = grouped_xyz

        return new_features


class GroupingOperation(Function):
    """Group feature with given index."""

    @staticmethod
    def forward(ctx, features: torch.Tensor,
                indices: torch.Tensor) -> torch.Tensor:
        """
        Args:
            features (Tensor): (B, C, N) tensor of features to group.
            indices (Tensor): (B, npoint, nsample) the indices of
                features to group with.

        Returns:
            Tensor: (B, C, npoint, nsample) Grouped features.
        """
        features = features.contiguous()
        indices = indices.contiguous()

        B, nfeatures, nsample = indices.size()
        _, C, N = features.size()
        output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)

        ext_module.group_points_forward(B, C, N, nfeatures, nsample, features,
                                        indices, output)

        ctx.for_backwards = (indices, N)
        return output

    @staticmethod
    def backward(ctx,
                 grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Args:
            grad_out (Tensor): (B, C, npoint, nsample) tensor of the gradients
                of the output from forward.

        Returns:
            Tensor: (B, C, N) gradient of the features.
        """
        idx, N = ctx.for_backwards

        B, C, npoint, nsample = grad_out.size()
        grad_features = torch.cuda.FloatTensor(B, C, N).zero_()

        grad_out_data = grad_out.data.contiguous()
        ext_module.group_points_backward(B, C, N, npoint, nsample,
                                         grad_out_data, idx,
                                         grad_features.data)
        return grad_features, None


grouping_operation = GroupingOperation.apply