Spaces:
Paused
Paused
File size: 25,722 Bytes
f8cdf59 c4213c1 0aa58cc 232ebf8 c4213c1 48cc71b c4213c1 6e03c09 c4213c1 1267536 c4213c1 1267536 c4213c1 1267536 c4213c1 1267536 c4213c1 1267536 c4213c1 c1bcc37 c4213c1 30ccf11 c4213c1 30ccf11 c4213c1 30ccf11 c4213c1 c1bcc37 c4213c1 e0aaa75 c4213c1 2ccf4dd c4213c1 496fdeb c4213c1 6e03c09 c4213c1 9540636 c4213c1 ba68b15 c4213c1 6e03c09 c4213c1 6e03c09 8961f4c 6e03c09 ba68b15 6e03c09 ba68b15 c4213c1 6e03c09 c4213c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 |
from flask import Flask, request, jsonify, Response, stream_with_context
import torch
import shutil
import os
import sys
from argparse import ArgumentParser
from time import strftime
from argparse import Namespace
from src.utils.preprocess import CropAndExtract
from src.test_audio2coeff import Audio2Coeff
from src.facerender.animate import AnimateFromCoeff
from src.generate_batch import get_data
from src.generate_facerender_batch import get_facerender_data
# from src.utils.init_path import init_path
import tempfile
from openai import OpenAI, AsyncOpenAI
import threading
import elevenlabs
from elevenlabs import set_api_key, generate, play, clone, Voice, VoiceSettings
# from flask_cors import CORS, cross_origin
# from flask_swagger_ui import get_swaggerui_blueprint
import uuid
import time
from PIL import Image
import moviepy.editor as mp
import requests
import json
import pickle
from celery import Celery
# from gevent import monkey
# monkey.patch_all()
import torch.multiprocessing as t
import multiprocessing
multiprocessing.set_start_method('spawn', force=True)
class AnimationConfig:
def __init__(self, driven_audio_path, source_image_path, result_folder,pose_style,expression_scale,enhancer,still,preprocess,ref_pose_video_path, image_hardcoded):
self.driven_audio = driven_audio_path
self.source_image = source_image_path
self.ref_eyeblink = None
self.ref_pose = ref_pose_video_path
self.checkpoint_dir = './checkpoints'
self.result_dir = result_folder
self.pose_style = pose_style
self.batch_size = 2
self.expression_scale = expression_scale
self.input_yaw = None
self.input_pitch = None
self.input_roll = None
self.enhancer = enhancer
self.background_enhancer = None
self.cpu = False
self.face3dvis = False
self.still = still
self.preprocess = preprocess
self.verbose = False
self.old_version = False
self.net_recon = 'resnet50'
self.init_path = None
self.use_last_fc = False
self.bfm_folder = './checkpoints/BFM_Fitting/'
self.bfm_model = 'BFM_model_front.mat'
self.focal = 1015.
self.center = 112.
self.camera_d = 10.
self.z_near = 5.
self.z_far = 15.
self.device = 'cuda'
self.image_hardcoded = image_hardcoded
app = Flask(__name__)
# CORS(app)
app.config['broker_url'] = 'redis://localhost:6379/0'
app.config['result_backend'] = 'redis://localhost:6379/0'
celery = Celery(app.name, broker=app.config['broker_url'])
celery.conf.update(app.config)
TEMP_DIR = None
start_time = None
chunk_tasks = []
app.config['temp_response'] = None
app.config['generation_thread'] = None
app.config['text_prompt'] = None
app.config['final_video_path'] = None
app.config['final_video_duration'] = None
def main(args):
print("Entered main function")
pic_path = args.source_image
audio_path = args.driven_audio
save_dir = args.result_dir
pose_style = args.pose_style
device = args.device
batch_size = args.batch_size
input_yaw_list = args.input_yaw
input_pitch_list = args.input_pitch
input_roll_list = args.input_roll
ref_eyeblink = args.ref_eyeblink
ref_pose = args.ref_pose
preprocess = args.preprocess
image_hardcoded = args.image_hardcoded
dir_path = os.path.dirname(os.path.realpath(__file__))
current_root_path = dir_path
print('current_root_path ',current_root_path)
# sadtalker_paths = init_path(args.checkpoint_dir, os.path.join(current_root_path, 'src/config'), args.size, args.old_version, args.preprocess)
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
if preprocess == 'full':
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00109-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender_still.yaml')
else:
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
# preprocess_model = CropAndExtract(sadtalker_paths, device)
#init model
print(path_of_net_recon_model)
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
# audio_to_coeff = Audio2Coeff(sadtalker_paths, device)
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
audio2exp_checkpoint, audio2exp_yaml_path,
wav2lip_checkpoint, device)
# animate_from_coeff = AnimateFromCoeff(sadtalker_paths, device)
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
facerender_yaml_path, device)
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
os.makedirs(first_frame_dir, exist_ok=True)
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess,\
# source_image_flag=True, pic_size=args.size)
# fixed_temp_dir = "/tmp/preprocess_data"
# os.makedirs(fixed_temp_dir, exist_ok=True)
# preprocessed_data_path = os.path.join(fixed_temp_dir, "preprocessed_data.pkl")
# if os.path.exists(preprocessed_data_path) and image_hardcoded == "yes":
# print("Loading preprocessed data...")
# with open(preprocessed_data_path, "rb") as f:
# preprocessed_data = pickle.load(f)
# first_coeff_new_path = preprocessed_data["first_coeff_path"]
# crop_pic_new_path = preprocessed_data["crop_pic_path"]
# crop_info_path = preprocessed_data["crop_info_path"]
# with open(crop_info_path, "rb") as f:
# crop_info = pickle.load(f)
# print(f"Loaded existing preprocessed data from: {preprocessed_data_path}")
# else:
# print("Running preprocessing...")
# first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
# first_coeff_new_path = os.path.join(fixed_temp_dir, os.path.basename(first_coeff_path))
# crop_pic_new_path = os.path.join(fixed_temp_dir, os.path.basename(crop_pic_path))
# crop_info_new_path = os.path.join(fixed_temp_dir, "crop_info.pkl")
# shutil.move(first_coeff_path, first_coeff_new_path)
# shutil.move(crop_pic_path, crop_pic_new_path)
# with open(crop_info_new_path, "wb") as f:
# pickle.dump(crop_info, f)
# preprocessed_data = {"first_coeff_path": first_coeff_new_path,
# "crop_pic_path": crop_pic_new_path,
# "crop_info_path": crop_info_new_path}
# with open(preprocessed_data_path, "wb") as f:
# pickle.dump(preprocessed_data, f)
# print(f"Preprocessed data saved to: {preprocessed_data_path}")
first_coeff_path, crop_pic_path, crop_info = preprocess_model.generate(pic_path, first_frame_dir, args.preprocess, source_image_flag=True)
print('first_coeff_path ',first_coeff_path)
print('crop_pic_path ',crop_pic_path)
print('crop_info ',crop_info)
if first_coeff_path is None:
print("Can't get the coeffs of the input")
return
if ref_eyeblink is not None:
ref_eyeblink_videoname = os.path.splitext(os.path.split(ref_eyeblink)[-1])[0]
ref_eyeblink_frame_dir = os.path.join(save_dir, ref_eyeblink_videoname)
os.makedirs(ref_eyeblink_frame_dir, exist_ok=True)
# ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir, args.preprocess, source_image_flag=False)
ref_eyeblink_coeff_path, _, _ = preprocess_model.generate(ref_eyeblink, ref_eyeblink_frame_dir)
else:
ref_eyeblink_coeff_path=None
print('ref_eyeblink_coeff_path',ref_eyeblink_coeff_path)
if ref_pose is not None:
if ref_pose == ref_eyeblink:
ref_pose_coeff_path = ref_eyeblink_coeff_path
else:
ref_pose_videoname = os.path.splitext(os.path.split(ref_pose)[-1])[0]
ref_pose_frame_dir = os.path.join(save_dir, ref_pose_videoname)
os.makedirs(ref_pose_frame_dir, exist_ok=True)
# ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir, args.preprocess, source_image_flag=False)
ref_pose_coeff_path, _, _ = preprocess_model.generate(ref_pose, ref_pose_frame_dir)
else:
ref_pose_coeff_path=None
print('ref_eyeblink_coeff_path',ref_pose_coeff_path)
batch = get_data(first_coeff_path, audio_path, device, ref_eyeblink_coeff_path, still=args.still)
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style, ref_pose_coeff_path)
if args.face3dvis:
from src.face3d.visualize import gen_composed_video
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
# data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
# batch_size, input_yaw_list, input_pitch_list, input_roll_list,
# expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess, size=args.size)
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
batch_size, input_yaw_list, input_pitch_list, input_roll_list,
expression_scale=args.expression_scale, still_mode=args.still, preprocess=args.preprocess)
# result, base64_video,temp_file_path= animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
# enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess, img_size=args.size)
multiprocessing.set_start_method('spawn', force=True)
result, base64_video,temp_file_path,new_audio_path = animate_from_coeff.generate(data, save_dir, pic_path, crop_info, \
enhancer=args.enhancer, background_enhancer=args.background_enhancer, preprocess=args.preprocess)
video_clip = mp.VideoFileClip(temp_file_path)
duration = video_clip.duration
app.config['temp_response'] = base64_video
app.config['final_video_path'] = temp_file_path
app.config['final_video_duration'] = duration
return base64_video, temp_file_path, duration
def create_temp_dir():
return tempfile.TemporaryDirectory()
def save_uploaded_file(file, filename,TEMP_DIR):
print("Entered save_uploaded_file")
unique_filename = str(uuid.uuid4()) + "_" + filename
file_path = os.path.join(TEMP_DIR.name, unique_filename)
file.save(file_path)
return file_path
# client = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))
# def openai_chat_avatar(text_prompt):
# response = client.chat.completions.create(
# model="gpt-4o-mini",
# messages=[{"role": "system", "content": "Answer using the minimum words you can ever use."},
# {"role": "user", "content": f"Hi! I need help with something. Can you assist me with the following: {text_prompt}"},
# ],
# max_tokens = len(text_prompt) + 300 # Use the length of the input text
# # temperature=0.3,
# # stop=["Translate:", "Text:"]
# )
# return response
def ryzedb_chat_avatar(question):
url = "https://inference.dev.ryzeai.ai/chat/stream"
question = question + ". Summarize and Answer using the minimum words you can ever use."
payload = json.dumps({
"input": {
"chat_history": [],
"app_id": os.getenv('RYZE_APP_ID'),
"question": question
},
"config": {}
})
headers = {
'Content-Type': 'application/json'
}
try:
# Send the POST request
response = requests.request("POST", url, headers=headers, data=payload)
# Check for successful request
response.raise_for_status()
# Return the response JSON
return response.text
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
return None
def custom_cleanup(temp_dir, exclude_dir):
# Iterate over the files and directories in TEMP_DIR
for filename in os.listdir(temp_dir):
file_path = os.path.join(temp_dir, filename)
# Skip the directory we want to exclude
if file_path != exclude_dir:
try:
if os.path.isdir(file_path):
shutil.rmtree(file_path)
else:
os.remove(file_path)
print(f"Deleted: {file_path}")
except Exception as e:
print(f"Failed to delete {file_path}. Reason: {e}")
def generate_audio(voice_cloning, voice_gender, text_prompt):
print("generate_audio")
if voice_cloning == 'no':
if voice_gender == 'male':
voice = 'echo'
print('Entering Audio creation using elevenlabs')
set_api_key("92e149985ea2732b4359c74346c3daee")
audio = generate(text = text_prompt, voice = "Daniel", model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
print('Audio file saved using elevenlabs')
else:
voice = 'nova'
print('Entering Audio creation using whisper')
response = client.audio.speech.create(model="tts-1-hd",
voice=voice,
input = text_prompt)
print('Audio created using whisper')
with tempfile.NamedTemporaryFile(suffix=".wav", prefix="text_to_speech_",dir=TEMP_DIR.name, delete=False) as temp_file:
driven_audio_path = temp_file.name
response.write_to_file(driven_audio_path)
print('Audio file saved using whisper')
elif voice_cloning == 'yes':
set_api_key("92e149985ea2732b4359c74346c3daee")
# voice = clone(name = "User Cloned Voice",
# files = [user_voice_path] )
voice = Voice(voice_id="CEii8R8RxmB0zhAiloZg",name="Marc",settings=VoiceSettings(
stability=0.71, similarity_boost=0.5, style=0.0, use_speaker_boost=True),)
audio = generate(text = text_prompt, voice = voice, model = "eleven_multilingual_v2",stream=True, latency=4)
with tempfile.NamedTemporaryFile(suffix=".mp3", prefix="cloned_audio_",dir=TEMP_DIR.name, delete=False) as temp_file:
for chunk in audio:
temp_file.write(chunk)
driven_audio_path = temp_file.name
print('driven_audio_path',driven_audio_path)
return driven_audio_path
def split_audio(audio_path, chunk_duration=5):
audio_clip = mp.AudioFileClip(audio_path)
total_duration = audio_clip.duration
audio_chunks = []
for start_time in range(0, int(total_duration), chunk_duration):
end_time = min(start_time + chunk_duration, total_duration)
chunk = audio_clip.subclip(start_time, end_time)
with tempfile.NamedTemporaryFile(suffix=f"_chunk_{start_time}-{end_time}.wav", prefix="audio_chunk_", dir=TEMP_DIR.name, delete=False) as temp_file:
chunk_path = temp_file.name
chunk.write_audiofile(chunk_path)
audio_chunks.append(chunk_path)
return audio_chunks
@celery.task
def process_video_for_chunk(audio_chunk_path, args_dict, chunk_index):
print("Entered process_video_for_chunk")
args = AnimationConfig(
driven_audio_path=args_dict['driven_audio_path'],
source_image_path=args_dict['source_image_path'],
result_folder=args_dict['result_folder'],
pose_style=args_dict['pose_style'],
expression_scale=args_dict['expression_scale'],
enhancer=args_dict['enhancer'],
still=args_dict['still'],
preprocess=args_dict['preprocess'],
ref_pose_video_path=args_dict['ref_pose_video_path'],
image_hardcoded=args_dict['image_hardcoded']
)
args.driven_audio = audio_chunk_path
chunk_save_dir = os.path.join(args.result_dir, f"chunk_{chunk_index}")
os.makedirs(chunk_save_dir, exist_ok=True)
print("args",args)
try:
base64_video, video_chunk_path, duration = main(args)
print(f"Main function returned: {video_chunk_path}, {duration}")
return video_chunk_path
except Exception as e:
print(f"Error in process_video_for_chunk: {str(e)}")
raise
# base64_video, video_chunk_path, duration = main(args)
# return video_chunk_path
@app.route("/run", methods=['POST'])
def generate_video():
global start_time
global chunk_tasks
start_time = time.time()
global TEMP_DIR
TEMP_DIR = create_temp_dir()
print('request:',request.method)
try:
if request.method == 'POST':
# source_image = request.files['source_image']
image_path = '/home/user/app/images/out.jpg'
source_image = Image.open(image_path)
text_prompt = request.form['text_prompt']
print('Input text prompt: ',text_prompt)
text_prompt = text_prompt.strip()
if not text_prompt:
return jsonify({'error': 'Input text prompt cannot be blank'}), 400
voice_cloning = request.form.get('voice_cloning', 'yes')
image_hardcoded = request.form.get('image_hardcoded', 'yes')
chat_model_used = request.form.get('chat_model_used', 'openai')
target_language = request.form.get('target_language', 'original_text')
print('target_language',target_language)
pose_style = int(request.form.get('pose_style', 1))
expression_scale = float(request.form.get('expression_scale', 1))
enhancer = request.form.get('enhancer', None)
voice_gender = request.form.get('voice_gender', 'male')
still_str = request.form.get('still', 'False')
still = still_str.lower() == 'false'
print('still', still)
preprocess = request.form.get('preprocess', 'crop')
print('preprocess selected: ',preprocess)
ref_pose_video = request.files.get('ref_pose', None)
if chat_model_used == 'ryzedb':
response = ryzedb_chat_avatar(text_prompt)
events = response.split('\r\n\r\n')
content = None
for event in events:
# Split each event block by "\r\n" to get the lines
lines = event.split('\r\n')
if len(lines) > 1 and lines[0] == 'event: data':
# Extract the JSON part from the second line and parse it
json_data = lines[1].replace('data: ', '')
try:
data = json.loads(json_data)
text_prompt = data.get('content')
app.config['text_prompt'] = text_prompt
print('Final output text prompt using ryzedb: ',text_prompt)
break # Exit the loop once content is found
except json.JSONDecodeError:
continue
else:
# response = openai_chat_avatar(text_prompt)
# text_prompt = response.choices[0].message.content.strip()
app.config['text_prompt'] = text_prompt
print('Final output text prompt using openai: ',text_prompt)
source_image_path = save_uploaded_file(source_image, 'source_image.png',TEMP_DIR)
print(source_image_path)
driven_audio_path = generate_audio(voice_cloning, voice_gender, text_prompt)
chunk_duration = 5
print(f"Splitting the audio into {chunk_duration}-second chunks...")
audio_chunks = split_audio(driven_audio_path, chunk_duration=chunk_duration)
print(f"Audio has been split into {len(audio_chunks)} chunks: {audio_chunks}")
save_dir = tempfile.mkdtemp(dir=TEMP_DIR.name)
result_folder = os.path.join(save_dir, "results")
os.makedirs(result_folder, exist_ok=True)
ref_pose_video_path = None
if ref_pose_video:
with tempfile.NamedTemporaryFile(suffix=".mp4", prefix="ref_pose_",dir=TEMP_DIR.name, delete=False) as temp_file:
ref_pose_video_path = temp_file.name
ref_pose_video.save(ref_pose_video_path)
print('ref_pose_video_path',ref_pose_video_path)
except Exception as e:
app.logger.error(f"An error occurred: {e}")
return "An error occurred", 500
# args = AnimationConfig(driven_audio_path=driven_audio_path, source_image_path=source_image_path, result_folder=result_folder, pose_style=pose_style, expression_scale=expression_scale,enhancer=enhancer,still=still,preprocess=preprocess,ref_pose_video_path=ref_pose_video_path, image_hardcoded=image_hardcoded)
args_dict = {
'driven_audio_path': driven_audio_path,
'source_image_path': source_image_path,
'result_folder': result_folder,
'pose_style': pose_style,
'expression_scale': expression_scale,
'enhancer': enhancer,
'still': still,
'preprocess': preprocess,
'ref_pose_video_path': ref_pose_video_path,
'image_hardcoded': image_hardcoded,
'device': 'cuda' if torch.cuda.is_available() else 'cpu'}
# if torch.cuda.is_available() and not args.cpu:
# args.device = "cuda"
# else:
# args.device = "cpu"
print("audio_chunks:",audio_chunks)
try:
for index, audio_chunk in enumerate(audio_chunks):
print(f"Submitting chunk {index} with audio_chunk: {audio_chunk}")
task = process_video_for_chunk.apply_async(args=[audio_chunk, args_dict, index])
print(f"Task {task.id} submitted for chunk {index}")
chunk_tasks.append(task)
print("chunk_tasks",chunk_tasks)
return jsonify({'status': 'Video generation started'}), 200
except Exception as e:
return jsonify({'status': 'error', 'message': str(e)}), 500
@app.route("/stream", methods=['GET'])
def stream_video_chunks():
global chunk_tasks
print("chunk_tasks:",chunk_tasks)
@stream_with_context
def generate_chunks():
video_chunk_paths = []
unfinished_tasks = chunk_tasks[:]
while unfinished_tasks: # Keep running until all tasks are finished
for task in unfinished_tasks[:]: # Iterate over a copy of the list
if task.ready(): # Check if the task is finished
try:
video_chunk_path = task.get() # Get the result (chunk path)
video_chunk_paths.append(video_chunk_path)
yield f'data: {video_chunk_path}\n\n' # Stream the chunk path to frontend
app.logger.info(f"Chunk generated and sent: {video_chunk_path}")
os.remove(video_chunk_path) # Optionally delete the chunk after sending
unfinished_tasks.remove(task) # Remove the finished task
except Exception as e:
app.logger.error(f"Error while fetching task result: {str(e)}")
yield f'data: error\n\n'
time.sleep(1) # Avoid busy waiting, check every second
preprocess_dir = os.path.join("/tmp", "preprocess_data")
custom_cleanup(TEMP_DIR.name, preprocess_dir)
app.logger.info("Temporary files cleaned up, but preprocess_data is retained.")
# Return the generator that streams the data as it becomes available
return Response(generate_chunks(), content_type='text/event-stream')
@app.route("/health", methods=["GET"])
def health_status():
response = {"online": "true"}
return jsonify(response)
if __name__ == '__main__':
app.run(debug=True)
|