File size: 7,154 Bytes
9c37e72 dba2773 9c37e72 1a16a58 9c37e72 0c5b55b 9c37e72 0c5b55b 9c37e72 1a16a58 9c37e72 0c5b55b 9c37e72 6e58c44 bd18577 c75cc74 9c37e72 36603f5 09d4214 9531d63 9c37e72 419e04c 9c37e72 09d4214 b4eff56 54ee49c f6a6e42 9c37e72 9531d63 9c37e72 f6a6e42 9c37e72 e113d20 3f6c2be 9c37e72 1a16a58 f1ae271 0a7287e 4b6d85d 63c4e55 2181afa 92953f3 63c4e55 f61fc0e 2181afa 8cc1e8b c08e6a6 b9c9fb8 cd370f7 fda8d0d b9b4937 c95ac40 9c37e72 c95ac40 9c37e72 b9b4937 c95ac40 b9b4937 c95ac40 b9b4937 9c37e72 b9b4937 b4eff56 fca844f b4eff56 b9b4937 9c37e72 b9b4937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
"""
#App: NLP App with Streamlit
Credits: Streamlit Team, Marc Skov Madsen(For Awesome-streamlit gallery)
Description
This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows;
+ Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
+ Named Entity Recognition(NER)/Trigger word detection using SpaCy
+ Sentiment Analysis using TextBlob
+ Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstructive.
This is built with Streamlit Framework, an awesome framework for building ML and NLP tools.
Purpose
To perform basic and useful NLP tasks with Streamlit, Spacy, Textblob, and Gensim
"""
# Core Pkgs
import os
#os.system('sudo apt-get install tesseract-ocr-eng')
#os.system('sudo apt-get install tesseract-ocr-ben')
#os.system('wget https://github.com/tesseract-ocr/tessdata/raw/main/ben.traineddata')
#os.system('gunzip ben.traineddata.gz ')
#os.system('sudo mv -v ben.traineddata /usr/local/share/tessdata/')
#os.system('pip install -q pytesseract')
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelWithLMHead, GPT2LMHeadModel
import docx2txt
from PIL import Image
from PyPDF2 import PdfFileReader
import pdfplumber
# NLP Pkgs
from textblob import TextBlob
import spacy
from gensim.summarization import summarize
import requests
import cv2
import numpy as np
import pytesseract
#pytesseract.pytesseract.tesseract_cmd = r"./Tesseract-OCR/tesseract.exe"
from PIL import Image
def read_pdf(file):
pdfReader = PdfFileReader(file)
count = pdfReader.numPages
all_page_text = ""
for i in range(count):
page = pdfReader.getPage(i)
all_page_text += page.extractText()
return all_page_text
#def read_pdf_with_pdfplumber(file):
# with pdfplumber.open(file) as pdf:
# page = pdf.pages[0]
# return page.extract_text()s
st.title("Streamlit NLP APP")
@st.experimental_singleton
def text_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
# tokens = [ token.text for token in docx]
allData = [('"Token":{},\n"Lemma":{}'.format(token.text,token.lemma_))for token in docx ]
return allData
@st.experimental_singleton
def load_models():
tokenizer = AutoTokenizer.from_pretrained('gpt2-large')
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
return tokenizer, model
# Function For Extracting Entities
@st.experimental_singleton
def entity_analyzer(my_text):
nlp = spacy.load('en_core_web_sm')
docx = nlp(my_text)
tokens = [ token.text for token in docx]
entities = [(entity.text,entity.label_)for entity in docx.ents]
allData = ['"Token":{},\n"Entities":{}'.format(tokens,entities)]
return allData
def main():
""" NLP Based Application with Streamlit """
st.markdown("""
#### Description
##This is a Natural Language Processing(NLP) base Application that is useful for basic NLP tasks such as follows:
+ Tokenization(POS tagging) & Lemmatization(root mean) using Spacy
+ Named Entity Recognition(NER)/Trigger word detection using SpaCy
+ Sentiment Analysis using TextBlob
+ Document/Text Summarization using Gensim/T5 both for Bangla Extractive and English Abstractive.
""")
def change_photo_state():
st.session_state["photo"]="done"
st.subheader("Please, feed your image/text, features/services will appear automatically!")
message = st.text_input("Type your text here!")
camera_photo = st.camera_input("Take a photo, Containing English or Bangla texts", on_change=change_photo_state)
uploaded_photo = st.file_uploader("Upload Image/PDF, Containing English or Bangla texts",type=['jpg','png','jpeg','pdf'], on_change=change_photo_state)
if "photo" not in st.session_state:
st.session_state["photo"]="not done"
if st.session_state["photo"]=="done" or message:
#text=""
if uploaded_photo.type=='application/pdf':
text = read_pdf(uploaded_photo)
#text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
st.success(text)
elif uploaded_photo.type != "application/image":
img = Image.open(uploaded_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
st.success(text)
elif camera_photo:
img = Image.open(camera_photo)
img = img.save("img.png")
img = cv2.imread("img.png")
text = pytesseract.image_to_string(img, lang="ben") if st.checkbox("Mark to see Bangla Image's Text") else pytesseract.image_to_string(img)
st.success(text)
elif uploaded_photo==None and camera_photo==None:
#our_image=load_image("image.jpg")
#img = cv2.imread("scholarly_text.jpg")
text = message
if st.checkbox("Show Named Entities English/Bangla"):
entity_result = entity_analyzer(text)
st.json(entity_result)
if st.checkbox("Show Sentiment Analysis for English"):
blob = TextBlob(text)
result_sentiment = blob.sentiment
st.success(result_sentiment)
if st.checkbox("Spell Corrections for English"):
st.success(TextBlob(text).correct())
if st.checkbox("Text Generation"):
ok = st.button("Generate")
if ok:
tokenizer, model = load_models()
input_ids = tokenizer(text, return_tensors='pt').input_ids
st.text("Using Hugging Face Transformer, Contrastive Search ..")
output = model.generate(input_ids, max_length=128)
st.success(tokenizer.decode(output[0], skip_special_tokens=True))
if st.checkbox("Mark here, Text Summarization for English or Bangla!"):
#st.subheader("Summarize Your Text for English and Bangla Texts!")
#message = st.text_area("Enter the Text","Type please ..")
#st.text("Using Gensim Summarizer ..")
#st.success(mess)
summary_result = summarize(text)
st.success(summary_result)
if st.checkbox("Mark to better English Text Summarization!"):
#st.title("Summarize Your Text for English only!")
tokenizer = AutoTokenizer.from_pretrained('t5-base')
model = AutoModelWithLMHead.from_pretrained('t5-base', return_dict=True)
#st.text("Using Google T5 Transformer ..")
inputs = tokenizer.encode("summarize: " + text,
return_tensors='pt',
max_length=512,
truncation=True)
summary_ids = model.generate(inputs, max_length=150, min_length=80, length_penalty=5., num_beams=2)
summary = tokenizer.decode(summary_ids[0])
st.success(summary)
# Title
if st.button("REFRESH"):
st.experimental_rerun()
st.sidebar.subheader("About App")
st.sidebar.markdown("By [Soumen Sarker](https://soumen-sarker-personal-website.streamlitapp.com/)")
if __name__ == '__main__':
main()
|