File size: 14,074 Bytes
71fdb6d
 
 
 
b39667b
71fdb6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39667b
71fdb6d
 
 
 
 
 
 
 
 
 
 
 
 
b39667b
71fdb6d
b39667b
71fdb6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39667b
 
 
71fdb6d
 
 
 
 
 
 
 
 
b39667b
 
 
 
 
 
 
 
 
71fdb6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39667b
71fdb6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b39667b
 
71fdb6d
b39667b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fdb6d
b39667b
71fdb6d
b39667b
71fdb6d
b39667b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71fdb6d
b39667b
 
71fdb6d
b39667b
71fdb6d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"""
Agent for extracting profile information from resumes
"""
import groq
from models import Profile, SocialMedia, Project, Skill, Education, Experience, Category
from typing import List, Dict, Any, Optional
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
import json
from config import get_settings
import logging

settings = get_settings()

# Configure logging
logging.basicConfig(
    level=logging.DEBUG if settings.DEBUG else logging.INFO,
    format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)

class ProfileExtractor:
    """
    Class for extracting profile information from resume text
    """
    def __init__(self):
        logger.debug("Initializing ProfileExtractor")
        self.groq_api_key = settings.GROQ_API_KEY
        self.model_name = settings.MODEL_NAME
        self.temperature = settings.TEMPERATURE
        self.max_tokens = settings.MAX_TOKENS
        self.llm = self._initialize_llm()
    
    def _initialize_llm(self) -> ChatGroq:
        """Initialize the language model client"""
        logger.debug("Initializing language model client")
        return ChatGroq(
            groq_api_key=self.groq_api_key,
            model_name=self.model_name,
            temperature=self.temperature,
            max_tokens=self.max_tokens
        )
    
    def extract_profile(self, pdf_text: str) -> Profile:
        """
        Main method to extract profile information from PDF text
        
        Args:
            pdf_text: Text extracted from a resume PDF
            
        Returns:
            Profile object with extracted information
        """
        logger.info("Extracting profile information")
        try:
            profile = self._extract_with_langchain(pdf_text)
            logger.info("Profile extracted successfully with LangChain")
            return profile
        except Exception as e:
            logger.error(f"LangChain extraction failed: {e}")
            if settings.DEBUG:
                print(f"LangChain extraction failed: {e}")
            return Profile(name="N/A", title="N/A", email="N/A", bio="N/A")
    
    def _extract_with_langchain(self, pdf_text: str) -> Profile:
        """Extract profile with structured LangChain approach"""
        logger.debug("Extracting profile with LangChain")
        format_instructions = """
        Extract the following information from the resume:
        1. Full name
        2. Professional title
        3. Email address
        4. Bio (a 50-100 word professional summary)
        5. Tagline (a short 5-10 word catchy phrase summarizing professional identity)
        6. Social media links (LinkedIn, GitHub, Instagram)
        7. Projects (with title, description, and tech stack)
        8. Skills (with category only one of : Technical, Soft Skills, or Domain Knowledge)
        9. Education history (with school, degree, field of study, start date and end date)
        10. Work experience (with company, position, start date, end date, and description)
        
        Return the information in the following JSON format:
        {
            "name": "Full Name",
            "title": "Professional Title",
            "email": "email@example.com",
            "bio": "Professional biography...",
            "tagline": "Catchy professional tagline",
            "social": {
                "linkedin": "LinkedIn URL or null",
                "github": "GitHub URL or null",
                "instagram": "Instagram URL or null"
            },
            "projects": [
                {
                    "title": "Project Title",
                    "description": "Project Description",
                    "techStack": "Technologies used"
                }
            ],
            "skills": [
                {"name": "Skill 1", "category": "Technical"},
                {"name": "Skill 2", "category": "Soft Skills"},
                {"name": "Skill 3", "category": "Domain Knowledge"}
            ],
            "educations": [
                {
                    "school": "University Name",
                    "degree": "Degree Type (e.g., Bachelor's, Master's)",
                    "fieldOfStudy": "Major or Field",
                    "startDate": "Start Year",
                    "endDate": "End Year or Present"
                }
            ],
            "experiences": [
                {
                    "company": "Company Name",
                    "position": "Job Title",
                    "startDate": "Start Date",
                    "endDate": "End Date or Present",
                    "description": "Job Description"
                }
            ]
        }
        
        If any information is not available, use null for that field.
        """
        
        template = """
        You are a professional resume parser. Extract structured information from the following resume:
        
        {pdf_text}
        
        {format_instructions}
        """
        
        prompt = PromptTemplate(
            template=template,
            input_variables=["pdf_text"],
            partial_variables={"format_instructions": format_instructions}
        )
        
        chain = prompt | self.llm
        result = chain.invoke({"pdf_text": pdf_text})
        response_text = result.content
        
        json_start = response_text.find('{')
        json_end = response_text.rfind('}') + 1
        
        if (json_start >= 0 and json_end > json_start):
            json_str = response_text[json_start:json_end]
            profile_dict = json.loads(json_str)
            profile = Profile.model_validate(profile_dict)
            profile = self._fill_missing_information(profile, pdf_text)
            logger.debug("Profile extracted and validated")
            return profile
        else:
            logger.error("No JSON found in the response")
            raise ValueError("No JSON found in the response")
    
    def _fill_missing_information(self, profile: Profile, pdf_text: str) -> Profile:
        """
        Attempts to fill in any missing information in the profile
        """
        logger.debug("Filling missing information in the profile")
        if not profile.name or profile.name == "N/A":
            try:
                response = self.llm.invoke("Extract only the full name from this resume text. Respond with just the name: " + pdf_text[:settings.CHUNK_SIZE])
                name = response.content.strip()
                if name and name != "N/A":
                    profile.name = name
                    logger.debug(f"Extracted name: {name}")
            except Exception as e:
                logger.error(f"Error extracting name: {e}")
        
        if not profile.title or profile.title == "N/A":
            try:
                response = self.llm.invoke("Extract only the professional title from this resume text. Respond with just the title: " + pdf_text[:settings.CHUNK_SIZE])
                title = response.content.strip()
                if title and title != "N/A":
                    profile.title = title
                    logger.debug(f"Extracted title: {title}")
            except Exception as e:
                logger.error(f"Error extracting title: {e}")
        
        if not profile.email or profile.email == "N/A":
            try:
                response = self.llm.invoke("Extract only the email address from this resume text. Respond with just the email: " + pdf_text)
                email = response.content.strip()
                if email and email != "N/A" and "@" in email:
                    profile.email = email
                    logger.debug(f"Extracted email: {email}")
            except Exception as e:
                logger.error(f"Error extracting email: {e}")
        
        if not profile.bio or profile.bio == "N/A":
            try:
                response = self.llm.invoke("Create a short professional biography (around 50-100 words) based on this resume. Focus on skills and experience: " + pdf_text)
                bio = response.content.strip()
                if bio and bio != "N/A":
                    profile.bio = bio
                    logger.debug(f"Created bio: {bio}")
            except Exception as e:
                logger.error(f"Error creating bio: {e}")
        
        if not profile.educations:
            try:
                education_prompt = "Extract education history from this resume. For each education entry, provide the school name, degree type, field of study, start date, and end date. Format the response as a list of JSON objects."
                response = self.llm.invoke(education_prompt + "\n\n" + pdf_text)
                education_text = response.content.strip()
                
                json_start = education_text.find('[')
                json_end = education_text.rfind(']') + 1
                
                if json_start >= 0 and json_end > json_start:
                    edu_json = education_text[json_start:json_end]
                    educations = json.loads(edu_json)
                    
                    for edu in educations:
                        education = Education(
                            school=edu.get("school", "Unknown"),
                            degree=edu.get("degree", ""),
                            fieldOfStudy=edu.get("fieldOfStudy", ""),
                            startDate=edu.get("startDate", ""),
                            endDate=edu.get("endDate", "")
                        )
                        profile.educations.append(education)
                        logger.debug(f"Added education: {education}")
            except Exception as e:
                logger.error(f"Error extracting education: {e}")
        
        if not profile.skills:
            try:
                skills_prompt = """
                Extract skills from this resume text and categorize them. 
                For each skill, determine if it's a Technical skill, Soft Skill, or Domain Knowledge.
                Format the response as a JSON array of objects with 'name' and 'category' fields.
                Example: [{"name": "Python", "category": "Technical"}, {"name": "Communication", "category": "Soft Skills"}]
                """
                response = self.llm.invoke(skills_prompt + "\n\n" + pdf_text)
                skills_text = response.content.strip()
                
                json_start = skills_text.find('[')
                json_end = skills_text.rfind(']') + 1
                
                if json_start >= 0 and json_end > json_start:
                    skills_json = skills_text[json_start:json_end]
                    skills_list = json.loads(skills_json)
                    
                    for skill_data in skills_list:
                        category = None
                        skill_name = skill_data.get("name", "").strip()
                        category_str = skill_data.get("category", "").strip()
                        
                        # Map the category string to our Category enum
                        if category_str.lower() == "technical":
                            category = Category.TECHNICAL
                        elif category_str.lower() in ["soft skills", "soft skill"]:
                            category = Category.SOFT_SKILLS
                        elif category_str.lower() in ["domain knowledge", "domain"]:
                            category = Category.DOMAIN_KNOWLEDGE
                        
                        if skill_name:
                            profile.skills.append(Skill(name=skill_name, category=category))
                            logger.debug(f"Added categorized skill: {skill_name} ({category})")
            except Exception as e:
                logger.error(f"Error extracting categorized skills: {e}")
        
        if not profile.experiences:
            try:
                experience_prompt = """
                Extract work experience from this resume. For each position, provide:
                - Company name
                - Position/job title
                - Start date
                - End date (or "Present" if current)
                - Job description (summarize responsibilities and achievements)
                Format the response as a list of JSON objects.
                """
                response = self.llm.invoke(experience_prompt + "\n\n" + pdf_text)
                exp_text = response.content.strip()
                
                json_start = exp_text.find('[')
                json_end = exp_text.rfind(']') + 1
                
                if json_start >= 0 and json_end > json_start:
                    exp_json = exp_text[json_start:json_end]
                    experiences = json.loads(exp_json)
                    
                    for exp in experiences:
                        experience = Experience(
                            company=exp.get("company", "Unknown"),
                            position=exp.get("position", ""),
                            startDate=exp.get("startDate", ""),
                            endDate=exp.get("endDate", ""),
                            description=exp.get("description", "")
                        )
                        profile.experiences.append(experience)
                        logger.debug(f"Added experience: {experience.company} - {experience.position}")
            except Exception as e:
                logger.error(f"Error extracting work experience: {e}")
                
        return profile
    

# Create module-level instance for easier imports
profile_extractor = ProfileExtractor()

# Export function for backward compatibility
def extract_profile_information(pdf_text: str) -> Profile:
    """Legacy function for backward compatibility"""
    return profile_extractor.extract_profile(pdf_text)

# Export the class and the function
__all__ = ['ProfileExtractor', 'extract_profile_information']