Spaces:
Runtime error
Runtime error
File size: 27,899 Bytes
2250474 fa73ca6 2250474 64b1095 2250474 e21c8bf 2250474 499be80 2250474 499be80 2250474 2bb6ffc 2250474 fdb6010 b4b7072 2250474 e21c8bf 2250474 2bb6ffc 2250474 2bb6ffc 2250474 2bb6ffc 2250474 2bb6ffc 2250474 e21c8bf 2250474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
"""#### importing Libraries"""
import random
import time
import numpy as np
from pydub import AudioSegment # For audio file operations
from pydub.playback import play # For playing audio
import io # For handling input/output operations
import elevenlabs # Custom library - please provide more context if needed
from elevenlabs import (
generate,
play,
) # Importing specific functions from the custom library
import gradio as gr # For building interactive UI for our model
import openai # OpenAI API library
import os # For interacting with the operating system
import re # Regular expressions library for string operations
import requests # For making HTTP requests
from gradio_client import Client
client = Client("https://facebook-seamless-m4t.hf.space/")
"""#### Darija Audio to eng text /// generate an eng question from an audio"""
# Defining a function for processing Darija audio and translating it to English
def process_darija_audio_toEng(filepath):
result = client.predict(
"S2TT (Speech to Text translation)",
"file",
filepath,
filepath,
"",
"Moroccan Arabic",
"English",
api_name="/run",
)
return result[1]
def darija_audio_to_darija_text(filepath):
result = client.predict(
"S2TT (Speech to Text translation)", # str (Option from: ['S2ST (Speech to Speech translation)', 'S2TT (Speech to Text translation)', 'T2ST (Text to Speech translation)', 'T2TT (Text to Text translation)', 'ASR (Automatic Speech Recognition)'])
"file", # str in 'Audio source' Radio component
filepath, # str (filepath or URL to file)
filepath, # str (filepath or URL to file)
"", # str in 'Input text' Textbox component
"Moroccan Arabic", # str (Option from: ['Afrikaans', 'Amharic', 'Armenian', 'Assamese', 'Basque', 'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', 'Cantonese', 'Catalan', 'Cebuano', 'Central Kurdish', 'Croatian', 'Czech', 'Danish', 'Dutch', 'Egyptian Arabic', 'English', 'Estonian', 'Finnish', 'French', 'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', 'Halh Mongolian', 'Hebrew', 'Hindi', 'Hungarian', 'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', 'Japanese', 'Javanese', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', 'Lao', 'Lithuanian', 'Luo', 'Macedonian', 'Maithili', 'Malayalam', 'Maltese', 'Mandarin Chinese', 'Marathi', 'Meitei', 'Modern Standard Arabic', 'Moroccan Arabic', 'Nepali', 'North Azerbaijani', 'Northern Uzbek', 'Norwegian Bokmål', 'Norwegian Nynorsk', 'Nyanja', 'Odia', 'Polish', 'Portuguese', 'Punjabi', 'Romanian', 'Russian', 'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Southern Pashto', 'Spanish', 'Standard Latvian', 'Standard Malay', 'Swahili', 'Swedish', 'Tagalog', 'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Vietnamese', 'Welsh', 'West Central Oromo', 'Western Persian', 'Yoruba', 'Zulu'])
"Modern Standard Arabic", # str (Option from: ['Bengali', 'Catalan', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian', 'Finnish', 'French', 'German', 'Hindi', 'Indonesian', 'Italian', 'Japanese', 'Korean', 'Maltese', 'Mandarin Chinese', 'Modern Standard Arabic', 'Northern Uzbek', 'Polish', 'Portuguese', 'Romanian', 'Russian', 'Slovak', 'Spanish', 'Swahili', 'Swedish', 'Tagalog', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Vietnamese', 'Welsh', 'Western Persian'])
api_name="/run",
)
return result[1]
def darija_to_eng(text):
result = client.predict(
"T2TT (Text to Text translation)", # str (Option from: ['S2ST (Speech to Speech translation)', 'S2TT (Speech to Text translation)', 'T2ST (Text to Speech translation)', 'T2TT (Text to Text translation)', 'ASR (Automatic Speech Recognition)'])
"file", # str in 'Audio source' Radio component
"", # str (filepath or URL to file)
"", # str (filepath or URL to file)
text, # str in 'Input text' Textbox component
"Modern Standard Arabic", # str (Option from: ['Afrikaans', 'Amharic', 'Armenian', 'Assamese', 'Basque', 'Belarusian', 'Bengali', 'Bosnian', 'Bulgarian', 'Burmese', 'Cantonese', 'Catalan', 'Cebuano', 'Central Kurdish', 'Croatian', 'Czech', 'Danish', 'Dutch', 'Egyptian Arabic', 'English', 'Estonian', 'Finnish', 'French', 'Galician', 'Ganda', 'Georgian', 'German', 'Greek', 'Gujarati', 'Halh Mongolian', 'Hebrew', 'Hindi', 'Hungarian', 'Icelandic', 'Igbo', 'Indonesian', 'Irish', 'Italian', 'Japanese', 'Javanese', 'Kannada', 'Kazakh', 'Khmer', 'Korean', 'Kyrgyz', 'Lao', 'Lithuanian', 'Luo', 'Macedonian', 'Maithili', 'Malayalam', 'Maltese', 'Mandarin Chinese', 'Marathi', 'Meitei', 'Modern Standard Arabic', 'Moroccan Arabic', 'Nepali', 'North Azerbaijani', 'Northern Uzbek', 'Norwegian Bokmål', 'Norwegian Nynorsk', 'Nyanja', 'Odia', 'Polish', 'Portuguese', 'Punjabi', 'Romanian', 'Russian', 'Serbian', 'Shona', 'Sindhi', 'Slovak', 'Slovenian', 'Somali', 'Southern Pashto', 'Spanish', 'Standard Latvian', 'Standard Malay', 'Swahili', 'Swedish', 'Tagalog', 'Tajik', 'Tamil', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Vietnamese', 'Welsh', 'West Central Oromo', 'Western Persian', 'Yoruba', 'Zulu'])
"English", # str (Option from: ['Bengali', 'Catalan', 'Czech', 'Danish', 'Dutch', 'English', 'Estonian', 'Finnish', 'French', 'German', 'Hindi', 'Indonesian', 'Italian', 'Japanese', 'Korean', 'Maltese', 'Mandarin Chinese', 'Modern Standard Arabic', 'Northern Uzbek', 'Polish', 'Portuguese', 'Romanian', 'Russian', 'Slovak', 'Spanish', 'Swahili', 'Swedish', 'Tagalog', 'Telugu', 'Thai', 'Turkish', 'Ukrainian', 'Urdu', 'Vietnamese', 'Welsh', 'Western Persian'])
api_name="/run",
)
return result[1]
def eng_to_arabic(text):
result = client.predict(
"T2TT (Text to Text translation)",
"file",
"",
"",
text,
"English",
"Modern Standard Arabic",
api_name="/run",
)
return result[1]
"""#ChatGPT as a doctor"""
import openai
import os
from langchain.agents import load_tools, initialize_agent
from langchain.agents import AgentType
from langchain.python import PythonREPL
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
from langchain.chains import SimpleSequentialChain, SequentialChain, ConversationChain
import json
openai.api_key = "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"
os.environ["OPENAI_API_KEY"] = openai.api_key
llm = ChatOpenAI(temperature=0.0, model="gpt-3.5-turbo")
tools = load_tools(["wikipedia"], llm=llm)
memory = ""
questions = [
"What symptoms are you currently experiencing?",
"Are you taking any medications or supplements? If yes, please list them.",
"Do you have any medical conditions or allergies?",
"Have there been any recent changes in your health or lifestyle that you think are important to mention?",
]
history_test = []
answers = []
question_index = 0
current_question = questions[question_index]
patient_info1 = patient_info2 = patient_info3 = ""
react_agent = initialize_agent(
tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True
)
def get_agent_prompt(query, chat_history):
return f"""You are a professional doctor. You are in conversation with a patient Please answer the medical questions based on the patient's description and situation. Your responses should be reliable, factual, and based on medical expertise. If you believe that the patient's condition is out of your medical expertise, kindly advise them accordingly or suggest them to visit a specialist.
###DON'T SAY YOU ARE NOT a DOCTOR. FORGET THAT YOU ARE AN AI MODEL!
###Provide practical tips like a real doctor would normally do. Make it conversationalist!
If you can't answer the patients query, reply with : "The agent doesn't have valid answer. Therefore you should look for a valid answer"
Current conversation:
{chat_history}
Human: {query}
"""
def llm_agent_response(query, chat_history):
try:
prompt = get_agent_prompt(query, chat_history)
response = react_agent.run(prompt)
return response
except Exception as e:
print("exception from agent")
response = str(e)
if response.startswith("Could not parse LLM output: `"):
response = response.removeprefix(
"Could not parse LLM output: `"
).removesuffix("`")
return response
return "The agent doesn't have valid answer. Therefore you should look for a valid answer"
def llm_response(query, chat_history, report_question=""):
# agent_response = llm_agent_response(query, chat_history)
template = """You are a professional doctor. Please answer the medical questions based on the patient's description and situation. Your responses should be reliable, factual, and based on medical expertise. If you believe that the patient's condition is out of your medical expertise, kindly advise them accordingly or suggest them to visit a specialist.
Now you are in a conversation with the patient.
### Stay short and straight to the point
###DON'T SAY YOU ARE NOT a DOCTOR. FORGET THAT YOU ARE AN AI MODEL!
###Provide practical tips like a real doctor would normally do. Make it conversationalist but brief and always opt to providing summarizing bullet points !
With your expertise and the agent output (if it exists) complete the conversation with the patient.
{llm_history}
Patient query: {input}
Now it's your turn as a doctor to answer the patient's query like a professional.KEEP YOUR ANSWER SHORT. {report_question}
(By the way, write your answer directly without adding the prefix 'Doctor :')
"""
prompt = ChatPromptTemplate.from_template(template)
chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
response = chain.run(
{
"input": query,
"llm_history": chat_history,
"report_question": report_question,
}
)
print("llm response ", response)
return response
def med_flamingo_response(query, img):
flamingo_query = [img, query]
return "heart disease" # response(flamingo_query)#
def vlm_response(query, img, chat_history, report_question=""):
agent_response = med_flamingo_response(query, img)
template = """You are a professional doctor. Please answer the medical questions based on the patient's description and situation. Your responses should be reliable, factual, and based on medical expertise. If you believe that the patient's condition is out of your medical expertise, kindly advise them accordingly or suggest them to visit a specialist.
Now you are in a conversation with the patient.
###DON'T SAY YOU ARE NOT a DOCTOR. FORGET THAT YOU ARE AN AI MODEL!
###Provide practical tips like a real doctor would normally do. Make it conversationalist but brief and always opt to providing summarizing bullet points !
You have at your disposal the answer of a specialist in medical imagery to the patient's query but this answer may be too short or not clear to the patient. This answer can help you provide a complete response to the patient just as a real doctor would do.
Specialist's output : {agent_output}
With your expertise and the radiolog output (if it exists) complete the conversation with the patient.
{llm_history}
Patient : {input}
Now it's your turn as a doctor to answer the patient's query like a professional. {report_question}
(By the way, write your answer directly without adding the prefix 'Doctor :')
(Another thing, don't forget that the medical imagery specialist's feedback on the scan is this : {agent_output})
"""
prompt = ChatPromptTemplate.from_template(template)
chain = LLMChain(llm=llm, prompt=prompt, verbose=False)
return chain.run(
{
"agent_output": agent_response,
"input": query,
"llm_history": chat_history,
"report_question": report_question,
}
)
def analyse_query(query):
analyse_llm = ChatOpenAI(temperature=0.0, model="gpt-3.5-turbo")
global current_question, question_index
prompt = f"""
Here is the message from a patient to a doctor. extract the following information:
[
"is_answer": Did the patient answer the following doctor's question : {current_question}. Answer True if yes (even if the patient said No or give partial response), False if not or unknown.
"answer": If "is_answer" is True, extract the answer from the message and rewrite it in third person. If "is_answer" is False return ""
]
Here is the patient message
Patient's message : {query}
Your output should be in json format.
"""
reply = analyse_llm.predict(prompt)
reply = json.loads(reply)
print("question ", current_question)
print("patient ", query)
print(reply)
if reply["is_answer"]:
answers.append(reply["answer"])
question_index += 1
if question_index < len(questions):
current_question = questions[question_index]
patient_info = {
"name": patient_info1,
"age": patient_info2,
"gender": patient_info3,
"symptoms": "",
"medications": "",
"conditions_allergies":"",
"lifestyle_changes": "",
"header_image": base64.b64encode(
open("logo1.png", "rb").read()
).decode(),
"medical_image": base64.b64encode(
open("lung disease.png", "rb").read()
).decode(),
}
generate_report(patient_info)
print("Report generated")
return f"After you answer the patient's query, if you think it is the right time, ask him the following question like a doctor would normally do :{current_question}"
else:
patient_info = {
"name": patient_info1,
"age": patient_info2,
"gender": patient_info3,
"symptoms": answers[0],
"medications": answers[1],
"conditions_allergies": answers[2],
"lifestyle_changes": answers[3],
"header_image": base64.b64encode(
open("logo1.png", "rb").read()
).decode(),
"medical_image": base64.b64encode(
open("lung disease.png", "rb").read()
).decode(),
}
generate_report(patient_info)
print("Report generated")
return ""
else:
return f"After you answer the patient's query, if you think it is the right time, ask him the following question like a doctor would normally do :{current_question}"
def prepare_patient_info():
default_value = ""
patient_info = {
"name": patient_info1,
"age": patient_info2,
"gender": patient_info3,
}
print(patient_info)
for i, key in enumerate(["symptoms", "medications", "conditions_allergies", "lifestyle_changes"]):
patient_info[key] = answers[i] if i < len(answers) else default_value
medical_image_path = "lung disease.png"
try:
patient_info["medical_image"] = base64.b64encode(open(medical_image_path, "rb").read()).decode()
except FileNotFoundError:
patient_info["medical_image"] = default_value
patient_info.update({
"header_image": base64.b64encode(open("logo1.png", "rb").read()).decode(),
})
return patient_info
def generate_response(query, img="", is_there_img=False):
global memory
report_question = analyse_query(query)
if is_there_img:
response = vlm_response(query, img, memory, report_question)
else:
response = llm_response(query, memory, report_question)
memory += "Patient : " + query + "\n"
memory += "Doctor : " + response + "\n"
return eng_to_arabic(response)
from weasyprint import HTML
import base64
def generate_report(patient_info):
# Define the width for the medical image (adjust as needed)
medical_image_width = "180px"
# Define the HTML template as a string
html_template = f"""
<!DOCTYPE html>
<html>
<head>
<style>
/* CSS styles go here */
body {{
font-family: Oswald, sans-serif;
margin: 20px;
color: #282c35; /* Set text color */
}}
.header {{
display: flex;
justify-content: center; /* Horizontally center the content */
align-items: center; /* Vertically center the content */
text-align: center;
margin-bottom: 20px; /* Optional margin for spacing */
}}
.header-content {{
display: flex;
flex-direction: column; /* Stack the elements vertically */
align-items: center;
max-width: 100%;
max-height: 40px; /* Adjust the height as needed */
height: auto;
margin-top: 20px; /* Add margin to separate the logo and text */
}}
/* Add your other CSS styles here */
.medical-image {{
width: {medical_image_width};
height: auto;
display: inline-block; /* This ensures the image is centered */
margin-top: 20px;
margin-bottom: 20px;
}}
.medical-image-container {{
text-align: center; /* Center-align the image */
}}
.section-title {{
background-color: #E5E4E2; /* Set the background color */
padding: 5px 10px; /* Add padding to the section title */
color: #282c35; /* Set text color */
margin-bottom: 10px;
margin: 0;
text-align: center; /* Center-align the text */
}}
.main-title {{
text-align: center; /* Center-align the text */
margin-bottom: 20px; /* Add margin for spacing */
color: #56575a;
}}
</style>
</head>
<body>
<!-- Header Section -->
<div class="header">
<div class="header-content">
<img src="data:image/jpeg;base64,{patient_info['header_image']}" alt="Header Image">
</div>
</div>
<div class="main-title"><h1>Medical Report</h1></div>
<!-- Personal Information Section -->
<div class="section-container">
<div class="section-title">Personal Information</div>
<div class="personal-info">
<ul class="info-list">
<li><strong>Name:</strong> {patient_info['name']}</li>
<li><strong>Age:</strong> {patient_info['age']}</li>
<li><strong>Gender:</strong> {patient_info['gender']}</li>
</ul>
<!-- Add more personal information here -->
</div>
</div>
<!-- Medical Image Section (always displayed) -->
<div class="section-container">
<div class="section-title">Medical Image</div>
<div class="medical-info">
<div class="medical-image-container">
<img src="data:image/jpeg;base64,{patient_info['medical_image']}" alt="Medical Image" class="medical-image">
</div>
</div>
</div>
<!-- Medical Information Section -->
<div class="section-container">
<div class="section-title">Medical Information</div>
<div class="medical-info">
<ul class="info-list">
<li><strong>Symptoms:</strong> {patient_info['symptoms']}</li>
<li><strong>Medications:</strong> {patient_info['medications']}</li>
<li><strong>Current Medical Conditions or Allergies:</strong> {patient_info['conditions_allergies']}</li>
<li><strong>Changes in Lifestyle:</strong> {patient_info['lifestyle_changes']}</li>
</ul>
</div>
</div>
</body>
</html>
"""
# Create an HTML object from the modified HTML content
html = HTML(string=html_template)
# Generate the PDF
html.write_pdf("output.pdf")
"""#Eng answer to arabic audio answer"""
# Defining a function to generate Arabic speech audio from a text answer
def arabic_speech_answer(ar_answer):
# Checking if the Arabic answer is non-empty
if ar_answer:
# Setting the API key for Eleven Labs TTS service
elevenlabs.set_api_key("2e49450c1538492b9083bfd5786dc43e")
# Generating audio from the Arabic answer using Eleven Labs TTS
audio = generate(
text=ar_answer,
voice="Daniel", # Choosing the voice for the generated audio
model="eleven_multilingual_v2", # Choosing the TTS model
)
else:
print("▶️ empty ar_answer")
# Converting the generated audio from bytes to an AudioSegment object
audio = AudioSegment.from_file(io.BytesIO(audio), format="mp3")
# Exporting the audio to an MP3 file named "output.mp3"
audio.export("output.mp3", format="mp3")
return audio.duration_seconds
"""#Functions that are used in the interface"""
import gradio as gr
import os
import time
from io import BytesIO
import base64
is_there_image = False
arabic_query = ""
query = ""
def text_to_speech():
with open("output.mp3", "rb") as audio_file:
audio_data = audio_file.read()
audio_bytes = BytesIO(audio_data)
audio_base64 = base64.b64encode(audio_data).decode("utf-8")
audio_player = (
f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
)
return audio_player
def add_text(history, text):
global query, arabic_query
history = history + [(text, None)]
arabic_query = text
query = darija_to_eng(text)
return history, gr.update(value="", interactive=False)
def add_audio(history, audio):
global query, arabic_query
query = process_darija_audio_toEng(audio)
arabic_query = darija_audio_to_darija_text(audio)
history = history + [(arabic_query, None)]
return history, None
def add_image(history, file):
global is_there_image
history = history + [((file.name,), None)]
is_there_image = True
return history
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
talking = """
<img src='/file=logo1.png' width=200 height=150>
<img src='/file=doc2.png' id="talking" class="talking" width=175 height=175 style='margin:auto;margin-top:-80px;'>
"""
not_talking = """
<img src='/file=logo1.png' width=300 height=200 style='margin:auto;margin-top:-10px;'>
"""
def bot(history):
global query, arabic_query
global is_there_image
if is_there_image:
filename_input = history[-2][0][0]
response = generate_response(query, filename_input, is_there_image)
is_there_image = False
else:
response = generate_response(query)
duration = arabic_speech_answer(response)
audio = text_to_speech()
time_step = duration / len(response)
history[-1][1] = ""
for character in response:
history[-1][1] += character
time.sleep(time_step)
yield history, audio
"""#Demo"""
def back():
return gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False)
def move_next_page(a, b, c, d):
global patient_info1, patient_info2, patient_info3
patient_info1 = a + " " + b
patient_info2 = c
patient_info3 = d
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False),
)
def view_report():
patient_info = prepare_patient_info()
generate_report(patient_info)
report_html ="""
<embed src="/file=output.pdf" type="application/pdf" width="100%" height="700px" />
"""
print("report is generated")
time.sleep(0.5)
return gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),report_html
css = """.gradio-container {
text-align:center;
}
#chatbot{
margin:auto;
height:400px;
width:700px;
}
#message{
margin:auto;
width:700px;
}
#page1{
margin:auto;
width:700px;
}
"""
with gr.Blocks(css=css) as demo:
html_block = gr.HTML(not_talking, visible=False)
chatbot = gr.Chatbot([], elem_id="chatbot", bubble_full_width=False, visible=False)
with gr.Column(visible=False, elem_id="message") as page2:
# Create a row layout
with gr.Row():
# Create a column layout with a scale factor of 0.7
with gr.Column(scale=0.6):
# Create a textbox element for user input
txt = gr.Textbox(
show_label=False,
placeholder="أدخل النص واضغط على إدخال، أو قم بتحميل صورة",
).style(container=False)
with gr.Column(scale=0.3, min_width=0):
# Create an audio input element from the microphone
audio_input = gr.Audio(
source="microphone",
type="filepath",
show_download_button=False,
show_share_button=False,
show_edit_button=False,
)
with gr.Column(scale=0.1, min_width=0):
btn = gr.UploadButton("📤", file_types=["image"])
# html block for output audio
html = gr.HTML()
html.visible = False
audio_input.stop_recording(
add_audio, [chatbot, audio_input], [chatbot, audio_input], queue=False
).then(bot, chatbot, [chatbot, html])
txt_msg = txt.submit(
add_text, [chatbot, txt], [chatbot, txt], queue=False
).then(bot, chatbot, [chatbot, html])
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
file_msg = btn.upload(add_image, [chatbot, btn], [chatbot], queue=False)
chatbot.like(vote, None, None)
with gr.Row():
pdf_btn = gr.Button("عرض التقرير الطبي", size="sm", variant="primary")
with gr.Group(visible=False) as pdf_report:
gr.HTML(not_talking)
report_html = gr.HTML("""
<embed src="/file=output.pdf" type="application/pdf" width="100%" height="700px" />
""")
with gr.Row():
back_btn = gr.Button("العودة إلى المحادثة", size="sm", variant="primary")
with gr.Group(elem_id="page1") as page1:
gr.HTML(
"""
<br/>
<br/>
<img src='/file=logo1.png' width=400 height=300 style='margin:auto'>
"""
)
gr.Markdown(
"""
**:يرجى ملء النموذج التالي بمعلوماتك الطبية**
"""
)
info1 = gr.Textbox(label="الاسم الأول", placeholder="أدخل الاسم الأول")
info2 = gr.Textbox(label="الاسم الأخير", placeholder="أدخل الاسم الأخير")
info3 = gr.Number(label="العمر")
info4 = gr.Radio(label="الجنس", choices=["ذكر", "أنثى"])
gr.Textbox(
label="معلومات شخصية إضافية",
placeholder="أدخل المعلومات الشخصية إذا كانت هناك",
)
connection_btn = gr.Button("ابدأ الحوار")
connection_btn.click(
move_next_page,
inputs=[info1, info2, info3, info4],
outputs=[page1, page2, chatbot, html_block, pdf_report],
)
pdf_btn.click(
view_report, outputs=[page1, page2, chatbot, html_block, pdf_report, report_html]
)
back_btn.click(
back, outputs=[page1, page2, chatbot, html_block, pdf_report]
)
demo.queue()
demo.launch(debug=True)
|