File size: 16,591 Bytes
feb2918 0c18aca feb2918 0c18aca feb2918 0c18aca feb2918 0c18aca feb2918 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
import copy
import glob
import os
import os.path as osp
import random
from functools import lru_cache
import cv2
import decord
import numpy as np
import skvideo.io
import torch
import torchvision
from decord import VideoReader, cpu, gpu
from tqdm import tqdm
random.seed(42)
decord.bridge.set_bridge("torch")
def get_spatial_fragments(
video,
fragments_h=7,
fragments_w=7,
fsize_h=32,
fsize_w=32,
aligned=32,
nfrags=1,
random=False,
random_upsample=False,
fallback_type="upsample",
upsample=-1,
**kwargs,
):
if upsample > 0:
old_h, old_w = video.shape[-2], video.shape[-1]
if old_h >= old_w:
w = upsample
h = int(upsample * old_h / old_w)
else:
h = upsample
w = int(upsample * old_w / old_h)
video = get_resized_video(video, h, w)
size_h = fragments_h * fsize_h
size_w = fragments_w * fsize_w
## video: [C,T,H,W]
## situation for images
if video.shape[1] == 1:
aligned = 1
dur_t, res_h, res_w = video.shape[-3:]
ratio = min(res_h / size_h, res_w / size_w)
if fallback_type == "upsample" and ratio < 1:
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, scale_factor=1 / ratio, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
if random_upsample:
randratio = random.random() * 0.5 + 1
video = torch.nn.functional.interpolate(
video / 255.0, scale_factor=randratio, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
assert dur_t % aligned == 0, "Please provide match vclip and align index"
size = size_h, size_w
## make sure that sampling will not run out of the picture
hgrids = torch.LongTensor(
[min(res_h // fragments_h * i, res_h - fsize_h) for i in range(fragments_h)]
)
wgrids = torch.LongTensor(
[min(res_w // fragments_w * i, res_w - fsize_w) for i in range(fragments_w)]
)
hlength, wlength = res_h // fragments_h, res_w // fragments_w
if random:
print("This part is deprecated. Please remind that.")
if res_h > fsize_h:
rnd_h = torch.randint(
res_h - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
if res_w > fsize_w:
rnd_w = torch.randint(
res_w - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
else:
if hlength > fsize_h:
rnd_h = torch.randint(
hlength - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
if wlength > fsize_w:
rnd_w = torch.randint(
wlength - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
)
else:
rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
target_video = torch.zeros(video.shape[:-2] + size).to(video.device)
# target_videos = []
for i, hs in enumerate(hgrids):
for j, ws in enumerate(wgrids):
for t in range(dur_t // aligned):
t_s, t_e = t * aligned, (t + 1) * aligned
h_s, h_e = i * fsize_h, (i + 1) * fsize_h
w_s, w_e = j * fsize_w, (j + 1) * fsize_w
if random:
h_so, h_eo = rnd_h[i][j][t], rnd_h[i][j][t] + fsize_h
w_so, w_eo = rnd_w[i][j][t], rnd_w[i][j][t] + fsize_w
else:
h_so, h_eo = hs + rnd_h[i][j][t], hs + rnd_h[i][j][t] + fsize_h
w_so, w_eo = ws + rnd_w[i][j][t], ws + rnd_w[i][j][t] + fsize_w
target_video[:, t_s:t_e, h_s:h_e, w_s:w_e] = video[
:, t_s:t_e, h_so:h_eo, w_so:w_eo
]
# target_videos.append(video[:,t_s:t_e,h_so:h_eo,w_so:w_eo])
# target_video = torch.stack(target_videos, 0).reshape((dur_t // aligned, fragments, fragments,) + target_videos[0].shape).permute(3,0,4,1,5,2,6)
# target_video = target_video.reshape((-1, dur_t,) + size) ## Splicing Fragments
return target_video
@lru_cache
def get_resize_function(size_h, size_w, target_ratio=1, random_crop=False):
if random_crop:
return torchvision.transforms.RandomResizedCrop(
(size_h, size_w), scale=(0.40, 1.0)
)
if target_ratio > 1:
size_h = int(target_ratio * size_w)
assert size_h > size_w
elif target_ratio < 1:
size_w = int(size_h / target_ratio)
assert size_w > size_h
return torchvision.transforms.Resize((size_h, size_w))
def get_resized_video(
video, size_h=224, size_w=224, random_crop=False, arp=False, **kwargs,
):
video = video.permute(1, 0, 2, 3)
resize_opt = get_resize_function(
size_h, size_w, video.shape[-2] / video.shape[-1] if arp else 1, random_crop
)
video = resize_opt(video).permute(1, 0, 2, 3)
return video
def get_arp_resized_video(
video, short_edge=224, train=False, **kwargs,
):
if train: ## if during training, will random crop into square and then resize
res_h, res_w = video.shape[-2:]
ori_short_edge = min(video.shape[-2:])
if res_h > ori_short_edge:
rnd_h = random.randrange(res_h - ori_short_edge)
video = video[..., rnd_h : rnd_h + ori_short_edge, :]
elif res_w > ori_short_edge:
rnd_w = random.randrange(res_w - ori_short_edge)
video = video[..., :, rnd_h : rnd_h + ori_short_edge]
ori_short_edge = min(video.shape[-2:])
scale_factor = short_edge / ori_short_edge
ovideo = video
video = torch.nn.functional.interpolate(
video / 255.0, scale_factors=scale_factor, mode="bilinear"
)
video = (video * 255.0).type_as(ovideo)
return video
def get_arp_fragment_video(
video, short_fragments=7, fsize=32, train=False, **kwargs,
):
if (
train
): ## if during training, will random crop into square and then get fragments
res_h, res_w = video.shape[-2:]
ori_short_edge = min(video.shape[-2:])
if res_h > ori_short_edge:
rnd_h = random.randrange(res_h - ori_short_edge)
video = video[..., rnd_h : rnd_h + ori_short_edge, :]
elif res_w > ori_short_edge:
rnd_w = random.randrange(res_w - ori_short_edge)
video = video[..., :, rnd_h : rnd_h + ori_short_edge]
kwargs["fsize_h"], kwargs["fsize_w"] = fsize, fsize
res_h, res_w = video.shape[-2:]
if res_h > res_w:
kwargs["fragments_w"] = short_fragments
kwargs["fragments_h"] = int(short_fragments * res_h / res_w)
else:
kwargs["fragments_h"] = short_fragments
kwargs["fragments_w"] = int(short_fragments * res_w / res_h)
return get_spatial_fragments(video, **kwargs)
def get_cropped_video(
video, size_h=224, size_w=224, **kwargs,
):
kwargs["fragments_h"], kwargs["fragments_w"] = 1, 1
kwargs["fsize_h"], kwargs["fsize_w"] = size_h, size_w
return get_spatial_fragments(video, **kwargs)
def get_single_view(
video, sample_type="aesthetic", **kwargs,
):
if sample_type.startswith("aesthetic"):
video = get_resized_video(video, **kwargs)
elif sample_type.startswith("technical"):
video = get_spatial_fragments(video, **kwargs)
elif sample_type.startswith("semantic"):
video = get_resized_video(video, **kwargs)
elif sample_type == "original":
return video
return video
def spatial_temporal_view_decomposition(
video_path, sample_types, samplers, is_train=False, augment=False,
):
video = {}
if torch.is_tensor(video_path):
all_frame_inds = []
frame_inds = {}
for stype in samplers:
frame_inds[stype] = samplers[stype](video_path.shape[0], is_train)
all_frame_inds.append(frame_inds[stype])
### Each frame is only decoded one time!!!
all_frame_inds = np.concatenate(all_frame_inds, 0)
frame_dict = {idx: video_path[idx].permute(1, 2, 0) for idx in np.unique(all_frame_inds)}
for stype in samplers:
imgs = [frame_dict[idx] for idx in frame_inds[stype]]
video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
else:
if video_path.endswith(".yuv"):
print("This part will be deprecated due to large memory cost.")
## This is only an adaptation to LIVE-Qualcomm
ovideo = skvideo.io.vread(
video_path, 1080, 1920, inputdict={"-pix_fmt": "yuvj420p"}
)
for stype in samplers:
frame_inds = samplers[stype](ovideo.shape[0], is_train)
imgs = [torch.from_numpy(ovideo[idx]) for idx in frame_inds]
video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
del ovideo
else:
decord.bridge.set_bridge("torch")
vreader = VideoReader(video_path)
### Avoid duplicated video decoding!!! Important!!!!
all_frame_inds = []
frame_inds = {}
for stype in samplers:
frame_inds[stype] = samplers[stype](len(vreader), is_train)
all_frame_inds.append(frame_inds[stype])
### Each frame is only decoded one time!!!
all_frame_inds = np.concatenate(all_frame_inds, 0)
frame_dict = {idx: vreader[idx] for idx in np.unique(all_frame_inds)}
for stype in samplers:
imgs = [frame_dict[idx] for idx in frame_inds[stype]]
video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
sampled_video = {}
for stype, sopt in sample_types.items():
sampled_video[stype] = get_single_view(video[stype], stype, **sopt)
return sampled_video, frame_inds
import random
import numpy as np
class UnifiedFrameSampler:
def __init__(
self, fsize_t, fragments_t, frame_interval=1, num_clips=1, drop_rate=0.0,
):
self.fragments_t = fragments_t
self.fsize_t = fsize_t
self.size_t = fragments_t * fsize_t
self.frame_interval = frame_interval
self.num_clips = num_clips
self.drop_rate = drop_rate
def get_frame_indices(self, num_frames, train=False):
tgrids = np.array(
[num_frames // self.fragments_t * i for i in range(self.fragments_t)],
dtype=np.int32,
)
tlength = num_frames // self.fragments_t
if tlength > self.fsize_t * self.frame_interval:
rnd_t = np.random.randint(
0, tlength - self.fsize_t * self.frame_interval, size=len(tgrids)
)
else:
rnd_t = np.zeros(len(tgrids), dtype=np.int32)
ranges_t = (
np.arange(self.fsize_t)[None, :] * self.frame_interval
+ rnd_t[:, None]
+ tgrids[:, None]
)
drop = random.sample(
list(range(self.fragments_t)), int(self.fragments_t * self.drop_rate)
)
dropped_ranges_t = []
for i, rt in enumerate(ranges_t):
if i not in drop:
dropped_ranges_t.append(rt)
return np.concatenate(dropped_ranges_t)
def __call__(self, total_frames, train=False, start_index=0):
frame_inds = []
for i in range(self.num_clips):
frame_inds += [self.get_frame_indices(total_frames)]
frame_inds = np.concatenate(frame_inds)
frame_inds = np.mod(frame_inds + start_index, total_frames)
return frame_inds.astype(np.int32)
class ViewDecompositionDataset(torch.utils.data.Dataset):
def __init__(self, opt):
## opt is a dictionary that includes options for video sampling
super().__init__()
self.weight = opt.get("weight", 0.5)
self.fully_supervised = opt.get("fully_supervised", False)
print("Fully supervised:", self.fully_supervised)
self.video_infos = []
self.ann_file = opt["anno_file"]
self.data_prefix = opt["data_prefix"]
self.opt = opt
self.sample_types = opt["sample_types"]
self.data_backend = opt.get("data_backend", "disk")
self.augment = opt.get("augment", False)
if self.data_backend == "petrel":
from petrel_client import client
self.client = client.Client(enable_mc=True)
self.phase = opt["phase"]
self.crop = opt.get("random_crop", False)
self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
self.std = torch.FloatTensor([58.395, 57.12, 57.375])
self.mean_semantic = torch.FloatTensor([122.77, 116.75, 104.09])
self.std_semantic = torch.FloatTensor([68.50, 66.63, 70.32])
self.samplers = {}
for stype, sopt in opt["sample_types"].items():
if "t_frag" not in sopt:
# resized temporal sampling for TQE in COVER
self.samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"], sopt["num_clips"], sopt["frame_interval"]
)
else:
# temporal sampling for AQE in COVER
self.samplers[stype] = UnifiedFrameSampler(
sopt["clip_len"] // sopt["t_frag"],
sopt["t_frag"],
sopt["frame_interval"],
sopt["num_clips"],
)
print(
stype + " branch sampled frames:",
self.samplers[stype](240, self.phase == "train"),
)
if isinstance(self.ann_file, list):
self.video_infos = self.ann_file
else:
try:
with open(self.ann_file, "r") as fin:
for line in fin:
line_split = line.strip().split(",")
filename, a, t, label = line_split
if self.fully_supervised:
label = float(a), float(t), float(label)
else:
label = float(label)
filename = osp.join(self.data_prefix, filename)
self.video_infos.append(dict(filename=filename, label=label))
except:
#### No Label Testing
video_filenames = []
for (root, dirs, files) in os.walk(self.data_prefix, topdown=True):
for file in files:
if file.endswith(".mp4"):
video_filenames += [os.path.join(root, file)]
print(len(video_filenames))
video_filenames = sorted(video_filenames)
for filename in video_filenames:
self.video_infos.append(dict(filename=filename, label=-1))
def __getitem__(self, index):
video_info = self.video_infos[index]
filename = video_info["filename"]
label = video_info["label"]
try:
## Read Original Frames
## Process Frames
data, frame_inds = spatial_temporal_view_decomposition(
filename,
self.sample_types,
self.samplers,
self.phase == "train",
self.augment and (self.phase == "train"),
)
for k, v in data.items():
if k == 'technical' or k == 'aesthetic':
data[k] = ((v.permute(1, 2, 3, 0) - self.mean) / self.std).permute(
3, 0, 1, 2
)
elif k == 'semantic' :
data[k] = ((v.permute(1, 2, 3, 0) - self.mean_semantic) / self.std_semantic).permute(
3, 0, 1, 2
)
data["num_clips"] = {}
for stype, sopt in self.sample_types.items():
data["num_clips"][stype] = sopt["num_clips"]
data["frame_inds"] = frame_inds
data["gt_label"] = label
data["name"] = filename # osp.basename(video_info["filename"])
except:
# exception flow
return {"name": filename}
return data
def __len__(self):
return len(self.video_infos)
|