File size: 16,591 Bytes
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c18aca
feb2918
 
 
0c18aca
feb2918
 
 
 
0c18aca
feb2918
 
 
 
0c18aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feb2918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import copy
import glob
import os
import os.path as osp
import random
from functools import lru_cache

import cv2
import decord
import numpy as np
import skvideo.io
import torch
import torchvision
from decord import VideoReader, cpu, gpu
from tqdm import tqdm

random.seed(42)

decord.bridge.set_bridge("torch")


def get_spatial_fragments(
    video,
    fragments_h=7,
    fragments_w=7,
    fsize_h=32,
    fsize_w=32,
    aligned=32,
    nfrags=1,
    random=False,
    random_upsample=False,
    fallback_type="upsample",
    upsample=-1,
    **kwargs,
):
    if upsample > 0:
        old_h, old_w = video.shape[-2], video.shape[-1]
        if old_h >= old_w:
            w = upsample
            h = int(upsample * old_h / old_w)
        else:
            h = upsample
            w = int(upsample * old_w / old_h)
        
        video = get_resized_video(video, h, w)
    size_h = fragments_h * fsize_h
    size_w = fragments_w * fsize_w
    ## video: [C,T,H,W]
    ## situation for images
    if video.shape[1] == 1:
        aligned = 1

    dur_t, res_h, res_w = video.shape[-3:]
    ratio = min(res_h / size_h, res_w / size_w)
    if fallback_type == "upsample" and ratio < 1:

        ovideo = video
        video = torch.nn.functional.interpolate(
            video / 255.0, scale_factor=1 / ratio, mode="bilinear"
        )
        video = (video * 255.0).type_as(ovideo)

    if random_upsample:

        randratio = random.random() * 0.5 + 1
        video = torch.nn.functional.interpolate(
            video / 255.0, scale_factor=randratio, mode="bilinear"
        )
        video = (video * 255.0).type_as(ovideo)
        
    assert dur_t % aligned == 0, "Please provide match vclip and align index"
    size = size_h, size_w

    ## make sure that sampling will not run out of the picture
    hgrids = torch.LongTensor(
        [min(res_h // fragments_h * i, res_h - fsize_h) for i in range(fragments_h)]
    )
    wgrids = torch.LongTensor(
        [min(res_w // fragments_w * i, res_w - fsize_w) for i in range(fragments_w)]
    )
    hlength, wlength = res_h // fragments_h, res_w // fragments_w

    if random:
        print("This part is deprecated. Please remind that.")
        if res_h > fsize_h:
            rnd_h = torch.randint(
                res_h - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
            )
        else:
            rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
        if res_w > fsize_w:
            rnd_w = torch.randint(
                res_w - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
            )
        else:
            rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
    else:
        if hlength > fsize_h:
            rnd_h = torch.randint(
                hlength - fsize_h, (len(hgrids), len(wgrids), dur_t // aligned)
            )
        else:
            rnd_h = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()
        if wlength > fsize_w:
            rnd_w = torch.randint(
                wlength - fsize_w, (len(hgrids), len(wgrids), dur_t // aligned)
            )
        else:
            rnd_w = torch.zeros((len(hgrids), len(wgrids), dur_t // aligned)).int()

    target_video = torch.zeros(video.shape[:-2] + size).to(video.device)
    # target_videos = []

    for i, hs in enumerate(hgrids):
        for j, ws in enumerate(wgrids):
            for t in range(dur_t // aligned):
                t_s, t_e = t * aligned, (t + 1) * aligned
                h_s, h_e = i * fsize_h, (i + 1) * fsize_h
                w_s, w_e = j * fsize_w, (j + 1) * fsize_w
                if random:
                    h_so, h_eo = rnd_h[i][j][t], rnd_h[i][j][t] + fsize_h
                    w_so, w_eo = rnd_w[i][j][t], rnd_w[i][j][t] + fsize_w
                else:
                    h_so, h_eo = hs + rnd_h[i][j][t], hs + rnd_h[i][j][t] + fsize_h
                    w_so, w_eo = ws + rnd_w[i][j][t], ws + rnd_w[i][j][t] + fsize_w
                target_video[:, t_s:t_e, h_s:h_e, w_s:w_e] = video[
                    :, t_s:t_e, h_so:h_eo, w_so:w_eo
                ]
    # target_videos.append(video[:,t_s:t_e,h_so:h_eo,w_so:w_eo])
    # target_video = torch.stack(target_videos, 0).reshape((dur_t // aligned, fragments, fragments,) + target_videos[0].shape).permute(3,0,4,1,5,2,6)
    # target_video = target_video.reshape((-1, dur_t,) + size) ## Splicing Fragments
    return target_video


@lru_cache
def get_resize_function(size_h, size_w, target_ratio=1, random_crop=False):
    if random_crop:
        return torchvision.transforms.RandomResizedCrop(
            (size_h, size_w), scale=(0.40, 1.0)
        )
    if target_ratio > 1:
        size_h = int(target_ratio * size_w)
        assert size_h > size_w
    elif target_ratio < 1:
        size_w = int(size_h / target_ratio)
        assert size_w > size_h
    return torchvision.transforms.Resize((size_h, size_w))


def get_resized_video(
    video, size_h=224, size_w=224, random_crop=False, arp=False, **kwargs,
):
    video = video.permute(1, 0, 2, 3)
    resize_opt = get_resize_function(
        size_h, size_w, video.shape[-2] / video.shape[-1] if arp else 1, random_crop
    )
    video = resize_opt(video).permute(1, 0, 2, 3)
    return video


def get_arp_resized_video(
    video, short_edge=224, train=False, **kwargs,
):
    if train:  ## if during training, will random crop into square and then resize
        res_h, res_w = video.shape[-2:]
        ori_short_edge = min(video.shape[-2:])
        if res_h > ori_short_edge:
            rnd_h = random.randrange(res_h - ori_short_edge)
            video = video[..., rnd_h : rnd_h + ori_short_edge, :]
        elif res_w > ori_short_edge:
            rnd_w = random.randrange(res_w - ori_short_edge)
            video = video[..., :, rnd_h : rnd_h + ori_short_edge]
    ori_short_edge = min(video.shape[-2:])
    scale_factor = short_edge / ori_short_edge
    ovideo = video
    video = torch.nn.functional.interpolate(
        video / 255.0, scale_factors=scale_factor, mode="bilinear"
    )
    video = (video * 255.0).type_as(ovideo)
    return video


def get_arp_fragment_video(
    video, short_fragments=7, fsize=32, train=False, **kwargs,
):
    if (
        train
    ):  ## if during training, will random crop into square and then get fragments
        res_h, res_w = video.shape[-2:]
        ori_short_edge = min(video.shape[-2:])
        if res_h > ori_short_edge:
            rnd_h = random.randrange(res_h - ori_short_edge)
            video = video[..., rnd_h : rnd_h + ori_short_edge, :]
        elif res_w > ori_short_edge:
            rnd_w = random.randrange(res_w - ori_short_edge)
            video = video[..., :, rnd_h : rnd_h + ori_short_edge]
    kwargs["fsize_h"], kwargs["fsize_w"] = fsize, fsize
    res_h, res_w = video.shape[-2:]
    if res_h > res_w:
        kwargs["fragments_w"] = short_fragments
        kwargs["fragments_h"] = int(short_fragments * res_h / res_w)
    else:
        kwargs["fragments_h"] = short_fragments
        kwargs["fragments_w"] = int(short_fragments * res_w / res_h)
    return get_spatial_fragments(video, **kwargs)


def get_cropped_video(
    video, size_h=224, size_w=224, **kwargs,
):
    kwargs["fragments_h"], kwargs["fragments_w"] = 1, 1
    kwargs["fsize_h"], kwargs["fsize_w"] = size_h, size_w
    return get_spatial_fragments(video, **kwargs)


def get_single_view(
    video, sample_type="aesthetic", **kwargs,
):
    if sample_type.startswith("aesthetic"):
        video = get_resized_video(video, **kwargs)
    elif sample_type.startswith("technical"):
        video = get_spatial_fragments(video, **kwargs)
    elif sample_type.startswith("semantic"):
        video = get_resized_video(video, **kwargs)
    elif sample_type == "original":
        return video

    return video


def spatial_temporal_view_decomposition(
    video_path, sample_types, samplers, is_train=False, augment=False,
):
    video = {}
    if torch.is_tensor(video_path):
        all_frame_inds = []
        frame_inds = {}
        for stype in samplers:
            frame_inds[stype] = samplers[stype](video_path.shape[0], is_train)
            all_frame_inds.append(frame_inds[stype])

        ### Each frame is only decoded one time!!!
        all_frame_inds = np.concatenate(all_frame_inds, 0)
        frame_dict = {idx: video_path[idx].permute(1, 2, 0) for idx in np.unique(all_frame_inds)}

        for stype in samplers:
            imgs = [frame_dict[idx] for idx in frame_inds[stype]]
            video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
    else:
        if video_path.endswith(".yuv"):
            print("This part will be deprecated due to large memory cost.")
            ## This is only an adaptation to LIVE-Qualcomm
            ovideo = skvideo.io.vread(
                video_path, 1080, 1920, inputdict={"-pix_fmt": "yuvj420p"}
            )
            for stype in samplers:
                frame_inds = samplers[stype](ovideo.shape[0], is_train)
                imgs = [torch.from_numpy(ovideo[idx]) for idx in frame_inds]
                video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)
            del ovideo
        else:
            decord.bridge.set_bridge("torch")
            vreader = VideoReader(video_path)
            ### Avoid duplicated video decoding!!! Important!!!!
            all_frame_inds = []
            frame_inds = {}
            for stype in samplers:
                frame_inds[stype] = samplers[stype](len(vreader), is_train)
                all_frame_inds.append(frame_inds[stype])

            ### Each frame is only decoded one time!!!           
            all_frame_inds = np.concatenate(all_frame_inds, 0)
            frame_dict = {idx: vreader[idx] for idx in np.unique(all_frame_inds)}

            for stype in samplers:
                imgs = [frame_dict[idx] for idx in frame_inds[stype]]
                video[stype] = torch.stack(imgs, 0).permute(3, 0, 1, 2)

    sampled_video = {}
    for stype, sopt in sample_types.items():
        sampled_video[stype] = get_single_view(video[stype], stype, **sopt)
    return sampled_video, frame_inds


import random

import numpy as np


class UnifiedFrameSampler:
    def __init__(
        self, fsize_t, fragments_t, frame_interval=1, num_clips=1, drop_rate=0.0,
    ):

        self.fragments_t = fragments_t
        self.fsize_t = fsize_t
        self.size_t = fragments_t * fsize_t
        self.frame_interval = frame_interval
        self.num_clips = num_clips
        self.drop_rate = drop_rate

    def get_frame_indices(self, num_frames, train=False):

        tgrids = np.array(
            [num_frames // self.fragments_t * i for i in range(self.fragments_t)],
            dtype=np.int32,
        )
        tlength = num_frames // self.fragments_t

        if tlength > self.fsize_t * self.frame_interval:
            rnd_t = np.random.randint(
                0, tlength - self.fsize_t * self.frame_interval, size=len(tgrids)
            )
        else:
            rnd_t = np.zeros(len(tgrids), dtype=np.int32)

        ranges_t = (
            np.arange(self.fsize_t)[None, :] * self.frame_interval
            + rnd_t[:, None]
            + tgrids[:, None]
        )

        drop = random.sample(
            list(range(self.fragments_t)), int(self.fragments_t * self.drop_rate)
        )
        dropped_ranges_t = []
        for i, rt in enumerate(ranges_t):
            if i not in drop:
                dropped_ranges_t.append(rt)
        return np.concatenate(dropped_ranges_t)

    def __call__(self, total_frames, train=False, start_index=0):
        frame_inds = []

        for i in range(self.num_clips):
            frame_inds += [self.get_frame_indices(total_frames)]

        frame_inds = np.concatenate(frame_inds)
        frame_inds = np.mod(frame_inds + start_index, total_frames)
        return frame_inds.astype(np.int32)


class ViewDecompositionDataset(torch.utils.data.Dataset):
    def __init__(self, opt):
        ## opt is a dictionary that includes options for video sampling

        super().__init__()

        self.weight = opt.get("weight", 0.5)
        
        self.fully_supervised = opt.get("fully_supervised", False)
        print("Fully supervised:", self.fully_supervised)
        
        self.video_infos = []
        self.ann_file = opt["anno_file"]
        self.data_prefix = opt["data_prefix"]
        self.opt = opt
        self.sample_types = opt["sample_types"]
        self.data_backend = opt.get("data_backend", "disk")
        self.augment = opt.get("augment", False)
        if self.data_backend == "petrel":
            from petrel_client import client

            self.client = client.Client(enable_mc=True)

        self.phase = opt["phase"]
        self.crop = opt.get("random_crop", False)
        self.mean = torch.FloatTensor([123.675, 116.28, 103.53])
        self.std = torch.FloatTensor([58.395, 57.12, 57.375])
        self.mean_semantic = torch.FloatTensor([122.77, 116.75, 104.09])
        self.std_semantic = torch.FloatTensor([68.50, 66.63, 70.32])
        self.samplers = {}
        for stype, sopt in opt["sample_types"].items():
            if "t_frag" not in sopt:
                # resized temporal sampling for TQE in COVER
                self.samplers[stype] = UnifiedFrameSampler(
                    sopt["clip_len"], sopt["num_clips"], sopt["frame_interval"]
                )
            else:
                # temporal sampling for AQE in COVER
                self.samplers[stype] = UnifiedFrameSampler(
                    sopt["clip_len"] // sopt["t_frag"],
                    sopt["t_frag"],
                    sopt["frame_interval"],
                    sopt["num_clips"],
                )
            print(
                stype + " branch sampled frames:",
                self.samplers[stype](240, self.phase == "train"),
            )

        if isinstance(self.ann_file, list):
            self.video_infos = self.ann_file
        else:
            try:
                with open(self.ann_file, "r") as fin:
                    for line in fin:
                        line_split = line.strip().split(",")
                        filename, a, t, label = line_split
                        if self.fully_supervised:
                            label = float(a), float(t), float(label)
                        else:
                            label = float(label)
                        filename = osp.join(self.data_prefix, filename)
                        self.video_infos.append(dict(filename=filename, label=label))
            except:
                #### No Label Testing
                video_filenames = []
                for (root, dirs, files) in os.walk(self.data_prefix, topdown=True):
                    for file in files:
                        if file.endswith(".mp4"):
                            video_filenames += [os.path.join(root, file)]
                print(len(video_filenames))
                video_filenames = sorted(video_filenames)
                for filename in video_filenames:
                    self.video_infos.append(dict(filename=filename, label=-1))

    def __getitem__(self, index):
        video_info = self.video_infos[index]
        filename = video_info["filename"]
        label = video_info["label"]

        try:
            ## Read Original Frames
            ## Process Frames
            data, frame_inds = spatial_temporal_view_decomposition(
                filename,
                self.sample_types,
                self.samplers,
                self.phase == "train",
                self.augment and (self.phase == "train"),
            )

            for k, v in data.items():
                if k == 'technical' or k == 'aesthetic':
                    data[k] = ((v.permute(1, 2, 3, 0) - self.mean) / self.std).permute(
                        3, 0, 1, 2
                    )
                elif k == 'semantic' :
                    data[k] = ((v.permute(1, 2, 3, 0) - self.mean_semantic) / self.std_semantic).permute(
                        3, 0, 1, 2
                    )

            data["num_clips"] = {}
            for stype, sopt in self.sample_types.items():
                data["num_clips"][stype] = sopt["num_clips"]
            data["frame_inds"] = frame_inds
            data["gt_label"] = label
            data["name"] = filename  # osp.basename(video_info["filename"])
        except:
            # exception flow
            return {"name": filename}

        return data

    def __len__(self):
        return len(self.video_infos)