Spaces:
Sleeping
Sleeping
File size: 9,768 Bytes
acd627a 6bce5a8 acd627a 6bce5a8 acd627a 3a7a436 acd627a 1d92620 acd627a 1d92620 acd627a 1d92620 acd627a 1d92620 acd627a 9c622c4 acd627a 9c622c4 acd627a 9c622c4 acd627a 9c622c4 acd627a 1d92620 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import torch
import gradio as gr
from torchvision.transforms import v2 as transforms
from PIL import Image
import numpy as np
import cv2
from torchvision.transforms.v2 import functional
# Constants
RESIZE_DIM = 224
NORMALIZE_MEAN = [0.485, 0.456, 0.406]
NORMALIZE_STD = [0.229, 0.224, 0.225]
# BreakHis tumor type labels (classes: ["TA", "MC", "F", "DC"])
BREAKHIS_LABELS = {
0: "Tubular Adenoma (TA) - Benign",
1: "Mucinous Carcinoma (MC) - Malignant",
2: "Fibroadenoma (F) - Benign",
3: "Ductal Carcinoma (DC) - Malignant"
}
GLEASON_LABELS = {
0: "Benign",
1: "Gleason 3",
2: "Gleason 4",
3: "Gleason 5"
}
BACH_LABELS = {0: "Benign",
1: "InSitu",
2:"Invasive",
3: "Normal"}
CRC_LABELS = {
0: "ADI",
1: "BACK",
2: "DEB",
3: "LYM",
4: "MUC",
5: "MUS",
6: "NORM",
7: "STR",
8: "TUM",
}
print("Loading DinoV2 base model...")
dinov2 = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitg14_reg')
print("Loading custom pathology checkpoint...")
#ours = torch.load("/data/linears/teacher_checkpoint.pth")
#checkpoint = torch.load("./teacher_checkpoint_load.pt")
checkpoint = torch.hub.load_state_dict_from_url("https://huggingface.co/SophontAI/OpenMidnight/resolve/main/teacher_checkpoint_load.pt")
new_shape = checkpoint["pos_embed"]
dinov2.pos_embed = torch.nn.parameter.Parameter(new_shape)
dinov2.load_state_dict(checkpoint)
dinov2.eval()
#torch.save(dinov2.state_dict(), "teacher_checkpoint_load.pt")
def setup_linear(path):
print(f"Loading {path} linear classifier...")
# Load the best checkpoint from the latest run
linear_checkpoint = torch.load(path)
linear_weights = linear_checkpoint["state_dict"]["head.weight"]
linear_bias = linear_checkpoint["state_dict"]["head.bias"]
# Create linear layer
linear = torch.nn.Linear(1536, 4)
linear.weight.data = linear_weights
linear.bias.data = linear_bias
linear.eval()
return linear
def setup_linear_crc(path):
print(f"Loading {path} linear classifier...")
# Load the best checkpoint from the latest run
linear_checkpoint = torch.load(path)
linear_weights = linear_checkpoint["state_dict"]["head.weight"]
linear_bias = linear_checkpoint["state_dict"]["head.bias"]
# Create linear layer
linear = torch.nn.Linear(1536, 9)
linear.weight.data = linear_weights
linear.bias.data = linear_bias
linear.eval()
return linear
# Move models to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dinov2 = dinov2.to(device)
breakhis_path = "./breakhis_best.ckpt"
breakhis_linear = setup_linear(breakhis_path).to(device)
gleason_path = "./gleason_best.ckpt"
gleason_linear = setup_linear(gleason_path).to(device)
bach_path = "./bach_best.ckpt"
bach_linear = setup_linear(bach_path).to(device)
crc_path = "./crc_best.ckpt"
crc_linear = setup_linear_crc(crc_path).to(device)
print(f"Models loaded on {device}")
model_transforms = transforms.Compose([
transforms.Resize(RESIZE_DIM),
transforms.CenterCrop(RESIZE_DIM),
transforms.ToDtype(torch.float32, scale=True),
transforms.Normalize(mean=NORMALIZE_MEAN, std=NORMALIZE_STD)
])
def cv_path(path):
image = cv2.imread(path, flags=cv2.IMREAD_COLOR)
if image.ndim == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
if image.ndim == 2 and flags == cv2.IMREAD_COLOR:
image = image[:, :, np.newaxis]
image = np.asarray(image, dtype=np.uint8)
image = functional.to_image(image)
return image
def predict_breakhis(image):
return predict_class(image, breakhis_linear, "breakhis")
def predict_gleason(image):
return predict_class(image, gleason_linear, "gleason")
def predict_bach(image):
return predict_class(image, bach_linear, "bach")
def predict_crc(image):
return predict_class(image, crc_linear, "crc")
def predict_class(image, linear, dataset):
"""
Predict breast tumor type from a histopathology image
Args:
image: PIL Image or numpy array
Returns:
dict: Probability distribution over tumor types
"""
image = cv_path(image)
# Preprocess image
image_tensor = model_transforms(image).unsqueeze(0).to(device)
# Get embedding from DinoV2
with torch.no_grad():
embedding = dinov2(image_tensor)
# Get logits from linear classifier
logits = linear(embedding)
print(logits)
# Convert to probabilities
probs = torch.nn.functional.softmax(logits, dim=1)
print(probs)
# Create output dictionary
probs_dict = {}
for idx, prob in enumerate(probs[0].cpu().numpy()):
if dataset == "breakhis":
probs_dict[BREAKHIS_LABELS[idx]] = float(prob)
elif dataset == "gleason":
probs_dict[GLEASON_LABELS[idx]] = float(prob)
elif dataset == "bach":
probs_dict[BACH_LABELS[idx]] = float(prob)
elif dataset == "crc":
probs_dict[CRC_LABELS[idx]] = float(prob)
return probs_dict
# Create Gradio interface
breakhis = gr.Interface(
fn=predict_breakhis,
inputs=gr.Image(type="filepath", label="Upload Breast Histopathology Image"),
outputs=gr.Label(num_top_classes=4, label="Tumor Type Prediction"),
title="BreakHis Breast Tumor Classification",
description="""
Upload a breast histopathology image to predict the tumor type. Your image must be at 40X magnification, and ideally between 224x224 and 700x460 resolution. Do not otherwise modify your image.
This model uses a custom-trained DinoV2 foundation model for pathology images
with a linear classifier for BreakHis tumor classification.
**Tumor Types:**
- **Benign tumors:** Tubular Adenoma (TA), Fibroadenoma (F)
- **Malignant tumors:** Mucinous Carcinoma (MC), Ductal Carcinoma (DC)
These 4 classes were selected from the full BreakHis dataset as they have sufficient patient counts (≥7 patients) for robust evaluation.
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
""",
examples=["./SOB_B_TA-14-13200-40-001.png",
"./SOB_M_MC-14-10147-40-001.png",
"./SOB_B_F-14-14134-40-001.png",
], # You can add example image paths here
theme=gr.themes.Soft()
)
gleason = gr.Interface(
fn=predict_gleason,
inputs=gr.Image(type="filepath", label="Upload Prostate Cancer Image"),
outputs=gr.Label(num_top_classes=4, label="Gleason Tumor Type Prediction"),
title="Gleason Prostate Tumor Classification",
description="""
Upload a prostate cancer image to predict the tumor type. Your image must be at 40X magnification, and ideally between 224x224 and 750x750 resolution. Do not otherwise modify your image.
This model uses a custom-trained DinoV2 foundation model for pathology images
with a linear classifier for gleason tumor classification.
Images are classified as benign, Gleason pattern 3, 4 or 5.
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
""",
examples=["./ZT111_4_A_1_12_patch_13_class_2.jpg",
"./ZT204_6_A_1_10_patch_10_class_3.jpg",
#"",
], # You can add example image paths here
theme=gr.themes.Soft()
)
crc = gr.Interface(
fn=predict_crc,
inputs=gr.Image(type="filepath", label="Upload Colorectal Cancer Image"),
outputs=gr.Label(num_top_classes=9, label="CRC Tumor Type Prediction"),
title="Colorectal Tumor Classification",
description="""
Upload a colorectal cancer image to predict the tumor type. Your image must be at 20X magnification, and ideally at 224x224. Do not otherwise modify your image.
This model uses a custom-trained DinoV2 foundation model for pathology images
with a linear classifier for colorectal tumor classification.
The tissue classes are: Adipose (ADI), background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle (MUS), normal colon mucosa (NORM), cancer-associated stroma (STR) and colorectal adenocarcinoma epithelium (TUM)
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
""",
examples=["./ADI-TCGA-AAICEQFN.png",
"./BACK-TCGA-AARRNSTS.png",
"./DEB-TCGA-AANNAWLE.png",
], # You can add example image paths here
theme=gr.themes.Soft()
)
bach = gr.Interface(
fn=predict_bach,
inputs=gr.Image(type="filepath", label="Upload Cancer Image"),
outputs=gr.Label(num_top_classes=4, label="Bach Tumor Type Prediction"),
title="Tumor Classification",
description="""
Upload a prostate cancer image to predict the tumor type. Your image must be at 20X magnification, and ideally between 224x224 and 1536x2048 resolution. Do not otherwise modify your image.
This model uses a custom-trained DinoV2 foundation model for pathology images
with a linear classifier for tumor classification.
Images are classified as benign, normal, invasive, inSitu
For this particular demo, images *must* be one of the sample classes - unsupported classes will yield confusing and/or useless results.
""",
examples=["./b001.png",
"./n001.png",
"./is001.png",
"./iv001.png"
], # You can add example image paths here
theme=gr.themes.Soft()
)
demo = gr.TabbedInterface([breakhis, gleason, crc, bach],["BreakHis", "Gleason", "CRC", "Bach"])
if __name__ == "__main__":
demo.launch()
|