Spaces:
Sleeping
Sleeping
File size: 6,579 Bytes
8b19012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
/******************************************************************************
* Copyright (c) 2023, Tri Dao.
******************************************************************************/
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
#include "causal_conv1d.h"
#include "causal_conv1d_common.h"
#include "static_switch.h"
template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
struct Causal_conv1d_update_kernel_traits {
using input_t = input_t_;
using weight_t = weight_t_;
static constexpr int kNThreads = kNThreads_;
static constexpr int kWidth = kWidth_;
static constexpr int kNBytes = sizeof(input_t);
static_assert(kNBytes == 2 || kNBytes == 4);
};
template<typename Ktraits, bool kIsCircularBuffer>
__global__ __launch_bounds__(Ktraits::kNThreads)
void causal_conv1d_update_kernel(ConvParamsBase params) {
constexpr int kWidth = Ktraits::kWidth;
constexpr int kNThreads = Ktraits::kNThreads;
using input_t = typename Ktraits::input_t;
using weight_t = typename Ktraits::weight_t;
const int tidx = threadIdx.x;
const int batch_id = blockIdx.x;
const int channel_id = blockIdx.y * kNThreads + tidx;
if (channel_id >= params.dim) return;
input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
+ channel_id * params.x_c_stride;
input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr) + batch_id * params.conv_state_batch_stride
+ channel_id * params.conv_state_c_stride;
weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
+ channel_id * params.out_c_stride;
float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
int state_len = params.conv_state_len;
int advance_len = params.seqlen;
int cache_seqlen = kIsCircularBuffer ? params.cache_seqlens[batch_id] % state_len : 0;
int update_idx = cache_seqlen - (kWidth - 1);
update_idx = update_idx < 0 ? update_idx + state_len : update_idx;
float weight_vals[kWidth] = {0};
#pragma unroll
for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
float x_vals[kWidth] = {0};
if constexpr (!kIsCircularBuffer) {
#pragma unroll 2
for (int i = 0; i < state_len - advance_len - (kWidth - 1); ++i) {
conv_state[i * params.conv_state_l_stride] = conv_state[(i + advance_len) * params.conv_state_l_stride];
}
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) {
input_t state_val = conv_state[(state_len - (kWidth - 1) + i) * params.conv_state_l_stride];
if (i < advance_len + (kWidth - 1) && state_len - advance_len - (kWidth - 1) + i >= 0) {
conv_state[(state_len - advance_len - (kWidth - 1) + i) * params.conv_state_l_stride] = state_val;
}
x_vals[i] = float(state_val);
}
} else {
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i, update_idx = update_idx + 1 >= state_len ? update_idx + 1 - state_len : update_idx + 1) {
input_t state_val = conv_state[update_idx * params.conv_state_l_stride];
x_vals[i] = float(state_val);
}
}
#pragma unroll 2
for (int i = 0; i < params.seqlen; ++i) {
input_t x_val = x[i * params.x_l_stride];
if constexpr (!kIsCircularBuffer) {
if (i < advance_len && state_len - advance_len + i >= 0) {
conv_state[(state_len - advance_len + i) * params.conv_state_l_stride] = x_val;
}
} else {
conv_state[update_idx * params.conv_state_l_stride] = x_val;
++update_idx;
update_idx = update_idx >= state_len ? update_idx - state_len : update_idx;
}
x_vals[kWidth - 1] = float(x_val);
float out_val = bias_val;
#pragma unroll
for (int j = 0; j < kWidth; ++j) { out_val += weight_vals[j] * x_vals[j]; }
if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
out[i * params.out_l_stride] = input_t(out_val);
// Shift the input buffer by 1
#pragma unroll
for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = x_vals[i + 1]; }
}
}
template<int kNThreads, int kWidth, typename input_t, typename weight_t>
void causal_conv1d_update_launch(ConvParamsBase ¶ms, cudaStream_t stream) {
using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
auto kernel = params.cache_seqlens == nullptr
? &causal_conv1d_update_kernel<Ktraits, false>
: &causal_conv1d_update_kernel<Ktraits, true>;
kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<typename input_t, typename weight_t>
void causal_conv1d_update_cuda(ConvParamsBase ¶ms, cudaStream_t stream) {
if (params.width == 2) {
causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
} else if (params.width == 3) {
causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
} else if (params.width == 4) {
causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
}
}
template void causal_conv1d_update_cuda<float, float>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, float>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, float>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<float, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, at::Half>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<float, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::Half, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream);
template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase ¶ms, cudaStream_t stream); |