File size: 21,714 Bytes
306b4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
/******************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/extension.h>
#include <vector>

#include "selective_scan.h"

#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")

#define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...)                    \
    if (ITYPE == at::ScalarType::Half) {                                            \
        using input_t = at::Half;                                                   \
        __VA_ARGS__();                                                              \
    } else if (ITYPE == at::ScalarType::BFloat16) {                                 \
        using input_t = at::BFloat16;                                               \
        __VA_ARGS__();                                                              \
    } else if (ITYPE == at::ScalarType::Float)  {                                   \
        using input_t = float;                                                      \
        __VA_ARGS__();                                                              \
    } else {                                                                        \
        AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
    }

#define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...)                     \
    if (WTYPE == at::ScalarType::Half) {                                             \
        using weight_t = at::Half;                                                   \
        __VA_ARGS__();                                                               \
    } else if (WTYPE == at::ScalarType::BFloat16) {                                  \
        using weight_t = at::BFloat16;                                               \
        __VA_ARGS__();                                                               \
    } else if (WTYPE == at::ScalarType::Float)  {                                    \
        using weight_t = float;                                                      \
        __VA_ARGS__();                                                               \
    } else {                                                                         \
        AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
    }

#define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...)                           \
    if (WTYPE == at::ScalarType::Float) {                                            \
       using weight_t = float;                                                       \
        __VA_ARGS__();                                                               \
    } else if (WTYPE == at::ScalarType::ComplexFloat) {                              \
        using weight_t = c10::complex<float>;                                        \
        __VA_ARGS__();                                                               \
    } else {                                                                         \
        AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
    }

template<typename input_t, typename weight_t>
void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);

template <typename input_t, typename weight_t>
void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream);

void set_ssm_params_fwd(SSMParamsBase &params,
                        // sizes
                        const size_t batch,
                        const size_t dim,
                        const size_t seqlen,
                        const size_t dstate,
                        const size_t n_groups,
                        const size_t n_chunks,
                        const bool is_variable_B,
                        const bool is_variable_C,
                        // device pointers
                        const at::Tensor u,
                        const at::Tensor delta,
                        const at::Tensor A,
                        const at::Tensor B,
                        const at::Tensor C,
                        const at::Tensor out,
                        const at::Tensor z,
                        const at::Tensor out_z,
                        void* D_ptr,
                        void* delta_bias_ptr,
                        void* x_ptr,
                        bool has_z,
                        bool delta_softplus) {

    // Reset the parameters
    memset(&params, 0, sizeof(params));

    params.batch = batch;
    params.dim = dim;
    params.seqlen = seqlen;
    params.dstate = dstate;
    params.n_groups = n_groups;
    params.n_chunks = n_chunks;
    params.dim_ngroups_ratio = dim / n_groups;

    params.delta_softplus = delta_softplus;

    params.is_variable_B = is_variable_B;
    params.is_variable_C = is_variable_C;

    // Set the pointers and strides.
    params.u_ptr = u.data_ptr();
    params.delta_ptr = delta.data_ptr();
    params.A_ptr = A.data_ptr();
    params.B_ptr = B.data_ptr();
    params.C_ptr = C.data_ptr();
    params.D_ptr = D_ptr;
    params.delta_bias_ptr = delta_bias_ptr;
    params.out_ptr = out.data_ptr();
    params.x_ptr = x_ptr;
    params.z_ptr = has_z ? z.data_ptr() : nullptr;
    params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
    // All stride are in elements, not bytes.
    params.A_d_stride = A.stride(0);
    params.A_dstate_stride = A.stride(1);
    if (!is_variable_B) {
        params.B_d_stride = B.stride(0);
    } else {
        params.B_batch_stride = B.stride(0);
        params.B_group_stride = B.stride(1);
    }
    params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
    if (!is_variable_C) {
        params.C_d_stride = C.stride(0);
    } else {
        params.C_batch_stride = C.stride(0);
        params.C_group_stride = C.stride(1);
    }
    params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
    params.u_batch_stride = u.stride(0);
    params.u_d_stride = u.stride(1);
    params.delta_batch_stride = delta.stride(0);
    params.delta_d_stride = delta.stride(1);
    if (has_z) {
        params.z_batch_stride = z.stride(0);
        params.z_d_stride = z.stride(1);
        params.out_z_batch_stride = out_z.stride(0);
        params.out_z_d_stride = out_z.stride(1);
    }
    params.out_batch_stride = out.stride(0);
    params.out_d_stride = out.stride(1);
}

void set_ssm_params_bwd(SSMParamsBwd &params,
                        // sizes
                        const size_t batch,
                        const size_t dim,
                        const size_t seqlen,
                        const size_t dstate,
                        const size_t n_groups,
                        const size_t n_chunks,
                        const bool is_variable_B,
                        const bool is_variable_C,
                        // device pointers
                        const at::Tensor u,
                        const at::Tensor delta,
                        const at::Tensor A,
                        const at::Tensor B,
                        const at::Tensor C,
                        const at::Tensor z,
                        const at::Tensor out,
                        const at::Tensor out_z,
                        void* D_ptr,
                        void* delta_bias_ptr,
                        void* x_ptr,
                        const at::Tensor dout,
                        const at::Tensor du,
                        const at::Tensor ddelta,
                        const at::Tensor dA,
                        const at::Tensor dB,
                        const at::Tensor dC,
                        const at::Tensor dz,
                        void* dD_ptr,
                        void* ddelta_bias_ptr,
                        bool has_z,
                        bool delta_softplus,
                        bool recompute_out_z) {
    // Pass in "dout" instead of "out", we're not gonna use "out" unless we have z
    set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
                       u, delta, A, B, C, has_z ? out : dout,
                       has_z ? z : dout,
                       // If not recompute_out_z, pass dout instead of out_z.
                       // This won't be used by the bwd kernel
                       recompute_out_z ? out_z : dout,
                       D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus);
    if (!recompute_out_z) { params.out_z_ptr = nullptr; }

    // Set the pointers and strides.
    params.dout_ptr = dout.data_ptr();
    params.du_ptr = du.data_ptr();
    params.dA_ptr = dA.data_ptr();
    params.dB_ptr = dB.data_ptr();
    params.dC_ptr = dC.data_ptr();
    params.dD_ptr = dD_ptr;
    params.ddelta_ptr = ddelta.data_ptr();
    params.ddelta_bias_ptr = ddelta_bias_ptr;
    params.dz_ptr = has_z ? dz.data_ptr() : nullptr;
    // All stride are in elements, not bytes.
    params.dout_batch_stride = dout.stride(0);
    params.dout_d_stride = dout.stride(1);
    params.dA_d_stride = dA.stride(0);
    params.dA_dstate_stride = dA.stride(1);
    if (!is_variable_B) {
        params.dB_d_stride = dB.stride(0);
    } else {
        params.dB_batch_stride = dB.stride(0);
        params.dB_group_stride = dB.stride(1);
    }
    params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2);
    if (!is_variable_C) {
        params.dC_d_stride = dC.stride(0);
    } else {
        params.dC_batch_stride = dC.stride(0);
        params.dC_group_stride = dC.stride(1);
    }
    params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2);
    params.du_batch_stride = du.stride(0);
    params.du_d_stride = du.stride(1);
    params.ddelta_batch_stride = ddelta.stride(0);
    params.ddelta_d_stride = ddelta.stride(1);
    if (has_z) {
        params.dz_batch_stride = dz.stride(0);
        params.dz_d_stride = dz.stride(1);
    }
}

std::vector<at::Tensor>
selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
                  const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
                  const c10::optional<at::Tensor> &D_,
                  const c10::optional<at::Tensor> &z_,
                  const c10::optional<at::Tensor> &delta_bias_,
                  bool delta_softplus) {
    auto input_type = u.scalar_type();
    auto weight_type = A.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
    TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);

    const bool is_variable_B = B.dim() >= 3;
    const bool is_variable_C = C.dim() >= 3;
    const bool is_complex = weight_type == at::ScalarType::ComplexFloat;

    TORCH_CHECK(delta.scalar_type() == input_type);
    TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
    TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));

    TORCH_CHECK(u.is_cuda());
    TORCH_CHECK(delta.is_cuda());
    TORCH_CHECK(A.is_cuda());
    TORCH_CHECK(B.is_cuda());
    TORCH_CHECK(C.is_cuda());

    TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
    TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);

    const auto sizes = u.sizes();
    const int batch_size = sizes[0];
    const int dim = sizes[1];
    const int seqlen = sizes[2];
    const int dstate = A.size(1);
    const int n_groups = is_variable_B ? B.size(1) : 1;

    TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");

    CHECK_SHAPE(u, batch_size, dim, seqlen);
    CHECK_SHAPE(delta, batch_size, dim, seqlen);
    CHECK_SHAPE(A, dim, dstate);
    if (!is_variable_B) {
        CHECK_SHAPE(B, dim, dstate);
    } else {
        CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
        TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
    }
    if (!is_variable_C) {
        CHECK_SHAPE(C, dim, dstate);
    } else {
        CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
        TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
    }

    if (D_.has_value()) {
        auto D = D_.value();
        TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
        TORCH_CHECK(D.is_cuda());
        TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
        CHECK_SHAPE(D, dim);
    }

    if (delta_bias_.has_value()) {
        auto delta_bias = delta_bias_.value();
        TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
        TORCH_CHECK(delta_bias.is_cuda());
        TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
        CHECK_SHAPE(delta_bias, dim);
    }

    at::Tensor z, out_z;
    const bool has_z = z_.has_value();
    if (has_z) {
        z = z_.value();
        TORCH_CHECK(z.scalar_type() == input_type);
        TORCH_CHECK(z.is_cuda());
        TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
        CHECK_SHAPE(z, batch_size, dim, seqlen);
        out_z = torch::empty_like(z);
    }

    const int n_chunks = (seqlen + 2048 - 1) / 2048;
    // const int n_chunks = (seqlen + 1024 - 1) / 1024;
    // at::Tensor out = torch::empty_like(u);
    // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
    at::Tensor out = torch::empty_like(delta);
    at::Tensor x;
    x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));

    SSMParamsBase params;
    set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
                       u, delta, A, B, C, out, z, out_z,
                       D_.has_value() ? D_.value().data_ptr() : nullptr,
                       delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
                       x.data_ptr(),
                       has_z,
                       delta_softplus);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)u.get_device()};
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
        DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
            selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
        });
    });
    std::vector<at::Tensor> result = {out, x};
    if (has_z) { result.push_back(out_z); }
    return result;
}

std::vector<at::Tensor>
selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta,
                  const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
                  const c10::optional<at::Tensor> &D_,
                  const c10::optional<at::Tensor> &z_,
                  const c10::optional<at::Tensor> &delta_bias_,
                  const at::Tensor &dout,
                  const c10::optional<at::Tensor> &x_,
                  const c10::optional<at::Tensor> &out_,
                  c10::optional<at::Tensor> &dz_,
                  bool delta_softplus,
                  bool recompute_out_z) {
    auto input_type = u.scalar_type();
    auto weight_type = A.scalar_type();
    TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
    TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);

    const bool is_variable_B = B.dim() >= 3;
    const bool is_variable_C = C.dim() >= 3;
    const bool is_complex = weight_type == at::ScalarType::ComplexFloat;

    TORCH_CHECK(delta.scalar_type() == input_type);
    TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
    TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
    TORCH_CHECK(dout.scalar_type() == input_type);

    TORCH_CHECK(u.is_cuda());
    TORCH_CHECK(delta.is_cuda());
    TORCH_CHECK(A.is_cuda());
    TORCH_CHECK(B.is_cuda());
    TORCH_CHECK(C.is_cuda());
    TORCH_CHECK(dout.is_cuda());

    TORCH_CHECK(u.stride(-1) == 1 || u.size(-1) == 1);
    TORCH_CHECK(delta.stride(-1) == 1 || delta.size(-1) == 1);
    TORCH_CHECK(dout.stride(-1) == 1 || dout.size(-1) == 1);

    const auto sizes = u.sizes();
    const int batch_size = sizes[0];
    const int dim = sizes[1];
    const int seqlen = sizes[2];
    const int dstate = A.size(1);
    const int n_groups = is_variable_B ? B.size(1) : 1;

    TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");

    CHECK_SHAPE(u, batch_size, dim, seqlen);
    CHECK_SHAPE(delta, batch_size, dim, seqlen);
    CHECK_SHAPE(A, dim, dstate);
    if (!is_variable_B) {
        CHECK_SHAPE(B, dim, dstate);
    } else {
        CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
        TORCH_CHECK(B.stride(-1) == 1 || B.size(-1) == 1);
    }
    if (!is_variable_C) {
        CHECK_SHAPE(C, dim, dstate);
    } else {
        CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
        TORCH_CHECK(C.stride(-1) == 1 || C.size(-1) == 1);
    }
    CHECK_SHAPE(dout, batch_size, dim, seqlen);

    if (D_.has_value()) {
        auto D = D_.value();
        TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
        TORCH_CHECK(D.is_cuda());
        TORCH_CHECK(D.stride(-1) == 1 || D.size(-1) == 1);
        CHECK_SHAPE(D, dim);
    }

    if (delta_bias_.has_value()) {
        auto delta_bias = delta_bias_.value();
        TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
        TORCH_CHECK(delta_bias.is_cuda());
        TORCH_CHECK(delta_bias.stride(-1) == 1 || delta_bias.size(-1) == 1);
        CHECK_SHAPE(delta_bias, dim);
    }

    at::Tensor z, out, dz, out_z;
    const bool has_z = z_.has_value();
    if (has_z) {
        z = z_.value();
        TORCH_CHECK(z.scalar_type() == input_type);
        TORCH_CHECK(z.is_cuda());
        TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
        CHECK_SHAPE(z, batch_size, dim, seqlen);

        TORCH_CHECK(out_.has_value());
        out = out_.value();
        TORCH_CHECK(out.scalar_type() == input_type);
        TORCH_CHECK(out.is_cuda());
        TORCH_CHECK(out.stride(-1) == 1 || out.size(-1) == 1);
        CHECK_SHAPE(out, batch_size, dim, seqlen);

        if (dz_.has_value()) {
            dz = dz_.value();
            TORCH_CHECK(dz.scalar_type() == input_type);
            TORCH_CHECK(dz.is_cuda());
            TORCH_CHECK(dz.stride(-1) == 1 || dz.size(-1) == 1);
            CHECK_SHAPE(dz, batch_size, dim, seqlen);
        } else {
            dz = torch::empty_like(z);
        }
        if (recompute_out_z) {
            out_z = torch::empty_like(out);
        }
    }

    const int n_chunks = (seqlen + 2048 - 1) / 2048;
    // const int n_chunks = (seqlen + 1024 - 1) / 1024;
    if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); }
    if (x_.has_value()) {
        auto x = x_.value();
        TORCH_CHECK(x.scalar_type() == weight_type);
        TORCH_CHECK(x.is_cuda());
        TORCH_CHECK(x.is_contiguous());
        CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate);
    }

    at::Tensor du = torch::empty_like(u);
    at::Tensor ddelta = torch::empty_like(delta);
    at::Tensor dA = torch::zeros_like(A);
    at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32));
    at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32));
    at::Tensor dD;
    if (D_.has_value()) { dD = torch::zeros_like(D_.value()); }
    at::Tensor ddelta_bias;
    if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); }

    SSMParamsBwd params;
    set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
                       u, delta, A, B, C, z, out, out_z,
                       D_.has_value() ? D_.value().data_ptr() : nullptr,
                       delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
                       x_.has_value() ? x_.value().data_ptr() : nullptr,
                       dout, du, ddelta, dA, dB, dC, dz,
                       D_.has_value() ? dD.data_ptr() : nullptr,
                       delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr,
                       has_z, delta_softplus, recompute_out_z);

    // Otherwise the kernel will be launched from cuda:0 device
    // Cast to char to avoid compiler warning about narrowing
    at::cuda::CUDAGuard device_guard{(char)u.get_device()};
    auto stream = at::cuda::getCurrentCUDAStream().stream();
    DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] {
        DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] {
            selective_scan_bwd_cuda<input_t, weight_t>(params, stream);
        });
    });
    std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias};
    if (has_z) { result.push_back(dz); }
    if (recompute_out_z) { result.push_back(out_z); }
    return result;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("fwd", &selective_scan_fwd, "Selective scan forward");
    m.def("bwd", &selective_scan_bwd, "Selective scan backward");
}