File size: 8,170 Bytes
2c200f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from langgraph.graph import StateGraph, END
from langchain.schema import BaseMessage, HumanMessage, AIMessage
from typing import TypedDict, List, Dict, Any
import json
from llm_client import LLMClient
from soil_analyzer import SoilLayerAnalyzer

class AgentState(TypedDict):
    messages: List[BaseMessage]
    soil_data: Dict[str, Any]
    analysis_results: Dict[str, Any]
    user_feedback: str
    current_task: str
    iteration_count: int
    text_content: str
    image_base64: str

class SoilAnalysisAgent:
    def __init__(self):
        # Initialize with None client - will be set when needed
        self.llm_client = None
        self.soil_analyzer = SoilLayerAnalyzer()
        self.graph = self._create_graph()
    
    def _create_graph(self):
        """Create the LangGraph workflow"""
        workflow = StateGraph(AgentState)
        
        # Add nodes
        workflow.add_node("analyze_document", self._analyze_document)
        workflow.add_node("validate_layers", self._validate_layers)
        workflow.add_node("optimize_layers", self._optimize_layers)
        workflow.add_node("generate_insights", self._generate_insights)
        workflow.add_node("handle_feedback", self._handle_feedback)
        
        # Add edges
        workflow.add_edge("analyze_document", "validate_layers")
        workflow.add_edge("validate_layers", "optimize_layers")
        workflow.add_edge("optimize_layers", "generate_insights")
        workflow.add_conditional_edges(
            "generate_insights",
            self._should_handle_feedback,
            {
                "feedback": "handle_feedback",
                "end": END
            }
        )
        workflow.add_edge("handle_feedback", "validate_layers")
        
        # Set entry point
        workflow.set_entry_point("analyze_document")
        
        return workflow.compile()
    
    def _analyze_document(self, state: AgentState) -> AgentState:
        """Analyze the soil boring log document"""
        # Extract document content from state
        document_content = state.get("text_content")
        image_content = state.get("image_base64")
        
        # Analyze using LLM
        soil_data = self.llm_client.analyze_soil_boring_log(
            text_content=document_content,
            image_base64=image_content
        )
        
        state["soil_data"] = soil_data
        state["current_task"] = "document_analysis"
        state["messages"].append(AIMessage(content="Document analysis completed"))
        
        return state
    
    def _validate_layers(self, state: AgentState) -> AgentState:
        """Validate soil layer continuity and consistency"""
        soil_data = state["soil_data"]
        
        if "soil_layers" in soil_data:
            # Validate layer continuity
            validated_layers = self.soil_analyzer.validate_layer_continuity(
                soil_data["soil_layers"]
            )
            
            soil_data["soil_layers"] = validated_layers
            
            # Calculate statistics
            stats = self.soil_analyzer.calculate_layer_statistics(validated_layers)
            state["analysis_results"] = {"validation_stats": stats}
        
        state["current_task"] = "layer_validation"
        state["messages"].append(AIMessage(content="Layer validation completed"))
        
        return state
    
    def _optimize_layers(self, state: AgentState) -> AgentState:
        """Optimize layer division by merging/splitting as needed"""
        soil_data = state["soil_data"]
        
        if "soil_layers" in soil_data:
            optimization_results = self.soil_analyzer.optimize_layer_division(
                soil_data["soil_layers"]
            )
            
            state["analysis_results"]["optimization"] = optimization_results
        
        state["current_task"] = "layer_optimization"
        state["messages"].append(AIMessage(content="Layer optimization completed"))
        
        return state
    
    def _generate_insights(self, state: AgentState) -> AgentState:
        """Generate insights and recommendations"""
        soil_data = state["soil_data"]
        analysis_results = state["analysis_results"]
        
        # Generate insights using LLM
        insights_prompt = f"""
        Based on the soil boring log analysis, provide geotechnical insights and recommendations:
        
        Soil Data: {json.dumps(soil_data, indent=2)}
        Analysis Results: {json.dumps(analysis_results, indent=2)}
        
        Please provide:
        1. Key geotechnical findings
        2. Foundation recommendations
        3. Construction considerations
        4. Potential risks or concerns
        5. Recommended additional testing
        """
        
        try:
            response = self.llm_client.client.chat.completions.create(
                model=self.llm_client.model,
                messages=[{"role": "user", "content": insights_prompt}],
                max_tokens=1000,
                temperature=0.3
            )
            
            insights = response.choices[0].message.content
            state["analysis_results"]["insights"] = insights
            
        except Exception as e:
            state["analysis_results"]["insights"] = f"Error generating insights: {str(e)}"
        
        state["current_task"] = "insight_generation"
        state["messages"].append(AIMessage(content="Insights generation completed"))
        
        return state
    
    def _handle_feedback(self, state: AgentState) -> AgentState:
        """Handle user feedback and refine analysis"""
        user_feedback = state.get("user_feedback", "")
        soil_data = state["soil_data"]
        
        if user_feedback:
            # Refine soil layers based on feedback
            refined_data = self.llm_client.refine_soil_layers(soil_data, user_feedback)
            
            if "error" not in refined_data:
                state["soil_data"] = refined_data
        
        state["current_task"] = "feedback_handling"
        state["iteration_count"] = state.get("iteration_count", 0) + 1
        state["messages"].append(AIMessage(content=f"Feedback processed (iteration {state['iteration_count']})"))
        
        return state
    
    def _should_handle_feedback(self, state: AgentState) -> str:
        """Determine if feedback should be handled"""
        if state.get("user_feedback") and state.get("iteration_count", 0) < 3:
            return "feedback"
        return "end"
    
    def run_analysis(self, text_content=None, image_base64=None, user_feedback=None):
        """Run the complete soil analysis workflow"""
        
        # Prepare initial state - store content in state instead of message
        initial_message = HumanMessage(content="Starting soil boring log analysis")
        
        initial_state = {
            "messages": [initial_message],
            "soil_data": {},
            "analysis_results": {},
            "user_feedback": user_feedback or "",
            "current_task": "initialization",
            "iteration_count": 0,
            "text_content": text_content,
            "image_base64": image_base64
        }
        
        # Run the graph
        result = self.graph.invoke(initial_state)
        
        return {
            "soil_data": result["soil_data"],
            "analysis_results": result["analysis_results"],
            "messages": result["messages"],
            "current_task": result["current_task"],
            "iteration_count": result["iteration_count"]
        }
    
    def process_feedback(self, current_state, feedback):
        """Process user feedback and continue analysis"""
        current_state["user_feedback"] = feedback
        
        # Continue from feedback handling
        result = self.graph.invoke(current_state, {"recursion_limit": 10})
        
        return {
            "soil_data": result["soil_data"],
            "analysis_results": result["analysis_results"],
            "messages": result["messages"],
            "current_task": result["current_task"],
            "iteration_count": result["iteration_count"]
        }